
1

Hidden Capabilities: Towards a Flexible Protection Utility
for the Internet

Internet: Daniel.Hagimont@imag.fr

1 Introduction

This paper presents a protection model based on software capabilities. Its main advantage is that
capabilities are hidden from the application programmer, allowing the protection policy of an application
to be defined independently from the application code. This is very interesting for protecting an already
developed application.

Our claim is that this protection model is well suited for a wide range of environments, from clusters
of tightly coupled servers to large loosely coupled servers on the Internet. It is particularly interesting
when applications are built by assembling many existing pieces of code into a single application.

We argue our claim by describing our model and its integration in three different environments: a

[OMG 91] and the Java programming environment [Java 95].

The rest of the paper is structured as follows. In section 2, we provide an overview of our
protection model based on hidden software capabilities. Section 3 discusses the integration of this model
in a DSM system, an ORB and the Java environment. We conclude in section 4.

2 Protection Model

2 . 1 Motivations

Protection is a crucial aspect of distributed computing, in particular when untrusted users co-operate
using shared objects. Several protection models have been proposed [Organick 72, Wulf 74,
Kowalski 90, Cabrera 92, Hagimont 94], among these are capability-based models [Levy 84].
Capabilities are very convenient because of their flexibility, allowing the implementation of various
execution and protection policies.

However, in all the proposed approaches (e.g. [Tanenbaum 86, Chase 94]), capabilities are made
available at the programming language level through capability variables that are used explicitly for:

• accessing objects (mapping an object to a capability)
• changing protection domains (with a capability on the called domain’s entry point)
• transferring access rights between protection domains (passing a capability as a parameter).

Therefore, in a protected application, the definition of protection is wired in the application code,
which necessitates a different implementation for each distinct set of access rights associated with its
execution. Moreover, protecting an already developed application or reusing an unprotected module
implies at least a partial re-implementation.

We claim instead that capabilities should be invisible to the programmer, in the sense that it should
be possible to define the protection policy of an application independently from its code. This allows a
single piece of a code to be executed with different protection policies, which ensures both economy and
separation of concerns. We have proposed a new protection model [Hagimont 96] which is based on
capabilities that are hidden from the application programmer, and which allows the protection policy of an
application to be defined only in terms of the application’s interface.

2

2 . 2 Overall Design

The protection model is based on the concepts of capability, protection domain (a set of capabilities
which defines the current protection environment of a process) and cross-domain capability (which allows
controlling protection domain changes).

As explained in 2.1, the main idea is to hide capabilities from the programmer when they are used
for access rights control, protection domain crossing and access rights transfer. It is implemented by
managing capabilities in a separate protected layer (the operating system kernel or a run-time
environment), and by providing administrators with an interface with which the management of access
rights can be expressed. This results in a system in which application code does not depend on protection;
protection-related actions (access rights checking, domain-crossing and rights transfers) are only triggered
when the application traps into the protected layer.

2 . 3 Managing access to protected objects

Protected objects are supposed to be shared and persistent. Very often in such a case, the first time
an application tries to access an object, it traps into the object manager which is supposed to bind the
object to the language level reference (an oid or a pointer) used to access the object.

Thus, this object manager is the protected layer mentionned above. The application being executed
in one protection domain, the object manager can check if a capability (for accessing the object) exists in
the current protection domain. If this is the case, the object manager completes the binding and resumes
the execution. If not, the object manager delivers a protection violation exception to the application.

Therefore, the application code only includes language references and does not have to include
capability operations.

2 . 4 Managing protection domain crossings

We want to allow protection domain crossing by implicit use of a cross-domain capability.
Therefore, in our model, a protection domain crossing capability is associated with an object and is used
only when the object cannot be accessed locally.

When an application in one protection domain traps in the object manager (for an object binding)
and if the protection domain doesn’t contain a capability for the target operation, but contains a cross-
domain capability (associated with the target operation), then the same access will trigger a domain
crossing, allowing the operation to be executed in the remote domain (specified by the capability).

2 . 5 Managing capability transfers

One of the main problems is then to allow capability parameters to be exchanged between protection
domains while keeping code independent from protection. From now on, we assume that an operation on
an object has a procedural form.

Our proposal is to express capability transfers using an Interface Definition Language (IDL). The
key feature we are using here is that an interface is defined separately from the code of the application.
Just like an interface is associated with an entry point in a remote server, an interface can be associated
with a domain capability which is an entry point in the target protection domain. This interface would
actually exist anyway if protection was implemented by a client-server system.

Therefore, our proposal is to specify capability transfer rules in an interface definition associated
with each domain capability. The IDL is extended to specify protection rules that define the capabilities
which must accompany object references transmitted as parameters. Note that this specification is
associated with a domain capability and is completely separated from the application code.

3

3 Application

In order to defend our claim that this protection model is well suited for a wide range of
environments, we discuss its integration into three environments, from tighly to lightly coupled: a DSM
system, CORBA and Java.

3 . 1 Application to a DSM system

This protection model has first been implemented in a Distributed Shared Memory system in which

Applications running in protection domains only know about virtual addresses. Objects (called
segments in this context) are dynamically mapped in the address spaces of user level processes. At the
first use of a segment in a process (i.e. at the first access to a virtual address in the segment), an
addressing error event is delivered to the local kernel. In response to this event, a capability for the
segment is searched for in the current domain. If the search succeeds, the segment is mapped and the
execution is restarted. The segment can be either a data segment or a code segment.

Cross-domain calls are associated with procedure calls. In the case of a code segment, if the domain
does not contain a capability for mapping the segment, but contains a domain capability associated with
the segment, then a cross domain call is forced. We implement this call in the same way as an RPC: a stub
is mapped instead of the code segment. This stub passes the effective parameters to the kernel which
implements the RPC. The kernel is responsible for transfering capabilities together with pointer
parameters according to the IDL specification associated with the domain capability.

3 . 2 Application to CORBA

In the framework of our project, we are also considering the application of hidden capabilities to
CORBA. More precisely, we are currently designing an implementation of our protection model in an
Orbix1 environment [Iona 94] on PC-Intel/Windows based machines.

In Orbix, applications are composed of servers that manage C++ objects. A server can invoke a
method on an object from a remote server by means of proxies. A proxy is an object that gives the illusion
that the target object is local but, when invoked, implements an RPC to the remote server, thus ensuring
the so-called distribution transparency. Proxies make use of stubs generated from IDL specifications
associated with class definitions.

In this environment, we only check protection for cross-server invocations. A server executes in a
protection domain in which capabilities define the remote objects that can be called. A capability is
associated with an object and specifies the access rights in terms of authorized methods. When a cross-
server invocation occurs, the executed stub can check whether a capability exists for the call. This stub is
also responsible for transfering capabilities to the remote server according to the protected IDL
specification.

Two implementations are considered. The first one is to manage capabilities in a server which has to
be consulted at each invocation, with the advantage to allow capability revocation. The second is to
manage capabilities directly in the servers address spaces; in that case, the use of capabilities must be
restricted, for example with password or encrypted capabilities. This choice is a trade-off between
fonctionality and efficiency. For the integration in Orbix, we use the ability to define filters that are some
kind of stub specialization.

1 Orbix is a Registered Trademark of Iona Technologies Ltd.

4

3 . 3 Application to Java

In this section, we claim that hidden capabilities could also be used for the protection of large
Internet applications such as those developed in the Java environment [Java 95].

Java is an object-oriented language and environment which allows the development of portable
applications. The key idea is that any piece of code written with the Java language can be run on any
machine on which the Java virtual machine has been installed. Thus, this is a means for building
“dynamic” applications that can load (at run time) Java classes available on ftp or Web servers on the
Internet. In such an environment, one of the key issues is the protection of the local file system from Java
applications while allowing these applications to use local files if needed.

Java manages some software protection domains that are used in order to isolate local classes from
remote classes. A separate protection domain is associated with each network origin; by default, classes
from different origins cannot reference each other.

In Java, files are accessible via a FILE class which confines accesses to files in a given directory.

Our plan is to generate an OURCLASSLOADER class (another implementation of the same abstract
class) that loads remote classes in a slightly different way. A stub class is generated for each remote class,
according to the protected IDL specification. This stub class is responsible for the transfer of capabilities
on files between protection domains. Therefore, the invocation of a remote class goes through this stub
that controls capability exchanges. We will also have to generate a new version of the class FILE that will
authorize a file access only if a capability exists in the protection domain.

4 Conclusion

In conclusion, we believe that hidden capabilities are well suited for many application areas. They
are currently used as the base mechanism for protecting applications on a DSM system. We are
experimenting with hidden capabilities on an ORB and exploring their use on top of the Java virtual
machine. This latter investigation shows a high potential for protection in very large scale applications.

Bibliography
[Cabrera 92] L.-F. Cabrera, A. W. Luniewski, J. W. Stamos. Fine-Grained Access Control in a Transactional Object-

Oriented System, Computing Systems, 5(3), Summer 1992.
[Chase 94] J. S. Chase, H. M. Levy, M. J. Feeley, E. D. Lazowska. Sharing and Protection in a Single-Address-Space

Operating System, ACM Transactions on Computer Systems, 12(4), pp. 271-307, November 1994.
[Hagimont 94] D. Hagimont. Protection in the Guide Object-Oriented Distributed System, Proc. of the 8th European

Conference on Object-Oriented Programming, pp. 280-298 , July 1994.
, 16th

International Conference on Distributed Computing Systems (to appear) , May 1996.
[Iona 94] Iona Technologies. Orbix distributed object technology - programmer’s guide, Version 1.2, February 1994.
[Java 95] The Java Language Environment: A White Paper, http://java.sun.com/whitePaper/java-whitepaper-1.html, Sun

Microsystems Inc., 1995.
Proc. of the 10th International

Conference on Distributed Computing Systems, pp. 160-166, May 1990.
[Levy 84] H. M. Levy. Capability-Based Computer Systems, Digital Press, 1984.
[OMG 91] OMG. The Common Object Request Broker: Architecture and Specification, OMG Document Number 91.12.1,

Revision 1.1, December 1991.
[Organick 72] E.I. Organick. The Multics System: an Examination of its Structure, MIT Press, 1972.

5th International
Workshop on Hot Topics in Operating Systems (HOTOS-V), pp. 113-118, Rosario, Washington, May 1995.

[Tanenbaum 86] A. S. Tanenbaum, S. J. Mullender, R. Van Renesse. Using Sparse Capabilities in a Distributed Operating
System, Proc. of the Sixth IEEE International Conference on Distributed Computing Systems, pp. 558-563, 1986.

[Wulf 74] W.A. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, F. Pollack. Hydra: The Kernel of a
Multiprocessor Operating System, Communications of the ACM, 17(6), June 1974.

