
Metamodeling Autonomic System Management Policies
Ongoing Works

Benoît Combemale, Laurent Broto, Alain Tchana and Daniel Hagimont

Institut de Recherche en Informatique de Toulouse (CNRS UMR 5505), Toulouse, France
first_name.last_name@enseeiht.fr

1 Introduction

Autonomic computing is recognized as one of the
most promising solution to address the increasingly
complex task of distributed environments’ administra-
tion. In this context, many projects relied on software
components and architectures to organize such an au-
tonomic management software.

However, we observed that the interfaces of a com-
ponent model are too low-level, difficult to use and
still error prone. Therefore, we introduced higher-level
languages for the modeling of deployment and man-
agement policies. These domain specific languages
enhance simplicity and consistency of the policies.
Our current work is to formally describe the metamod-
els and the semantics associated with these languages.

After an introduction of the research context and
our motivations in Section 2, we present our approach
to the modeling of management policies. We first
overview in Section 3 the UML-based language sup-
port we provide for management policy specification.
We then describe in Section 4 the metamodels associ-
ated with these languages. We conclude this position
paper in Section 5 with the perspectives that this work
opens.

2 Background

2.1 Autonomic Computing

Today’s computing environments are becoming in-
creasingly sophisticated. They involve numerous com-

0This work is supported by the RNTL project SCORWARE

(contract ANR-06-TLOG-017), cf. http://www.scorware.org.

plex software that cooperate in potentially large scale
distributed environments. These software are devel-
oped with very heterogeneous programming models
and their configuration facilities are generally propri-
etary. Therefore, the management1 of these software
(installation, configuration, tuning, repair ...) is a
much complex task which consumes a lot of human
ressources.

A very promising approach to this issue is to imple-
ment administration as an autonomic software. Such a
software can be used to deploy and configure applica-
tions in a distributed environment. It can also monitor
the environment and react to events such as failures
or overloads and reconfigure applications accordingly
and autonomously.

2.2 Component-based Autonomic Sys-
tems

Many works in this area have relied on a com-
ponent model to provide such an autonomic system
support [4, 6, 11]. The basic idea is to encapsulate
the managed elements (legacy software) in software
components and to administrate the environment as a
component architecture. Then, the administrators can
benefit from the essential features of the component
model, encapsulation, configuration, deployment and
reconfiguration facilities, in order to implement their
autonomic management processes.

In a previous project, we designed and implemented
such a component-based autonomic management sys-
tem (Jade [6]). In the Jade system, an administra-

1we also use the term administration to refer to management
operations

Figure 1. Management layer

tor can wrap legacy software in components (Jade re-
lies on the Fractal component model [2]), describe a
software configuration to deploy using the component
model ADL (Architecture Description Language) and
implement reconfiguration programs (autonomic man-
agers) using the component model’s interfaces (Java
interfaces in Fractal).

Therefore, the Fractal component model is used to
implement a management layer on top of the legacy
layer (composed of the actual managed software). Fig-
ure 1 illustrates this management layer for a clas-
sical J2EE software architecture where several mid-
dleware tiers (request load-balancer, Apache, Tomcat,
MySQL) are combined and interconnected.

In the management layer, all components provide
a management interface for the encapsulated software,
and the corresponding implementation (the wrapper) is
specific to each software. Fractal’s control interfaces
allow managing the element’s attributes and bindings
with other elements, and the management interface of
each component allows controlling its internal con-
figuration state. Relying on this management layer,
sophisticated administration programs can be imple-
mented, without having to deal with complex, propri-
etary configuration interfaces (generally configuration
files), which are hidden in the wrappers.

Component-based autonomic computing has
proved to be a very convenient approach. The ex-
periments we conducted with Jade [6] for managing
cluster or grid infrastructures validated this design
choice. But as Jade was used by external users
(external to our group), we observed that:

• wrapping components are difficult to implement.
The developper needs to have a good understand-
ing of the component model we use (Fractal).

• configuring an architecture to be deployed is not
very easy. ADLs are generally very verbose and
still require a good understanding of the under-
lying component model. Moreover, if we con-
sider large scale software infrastructure such as
those deployed over a grid, deploying a thousand
of servers requires an ADL description file of sev-
eral thousands of lines.

• autonomic managers (reconfiguration policies)
are difficult to implement as they have to be
programmed using the management and control
interfaces (Fractal’s APIs) of the management
layer. This also required a strong expertise re-
garding the used component model. Moreover, it
is difficult to enforce consistency of the managed
infrastructure whenever it is reconfigured.

3 Policies specification in Tune

All the previous observations led us to the conclu-
sion that higher-level support was required for describ-
ing the encapsulation of software in components, the
configuration and deployment of a software environ-
ment potentially in large scale and the reconfiguration
policies to be applied autonomically. Tune is an evo-
lution of Jade which aims at providing a higher level
formalism for all these tasks (wrapping, configuration,
deployment, reconfiguration). The main motivation is
to hide the details of the component model we rely on
and to provide a more intuitive policy specification in-
terface. A more detailed description of management
policy specification in Tune is available in [1].

3.1 A language dedicated to wrapping de-
scription

Regarding wrapping, our approach is to intro-
duce an XML-based Wrapping Description Language
which is used to specify the behavior of wrappers. A
WDL specification is interpreted by a generic wrap-
per Fractal component, the specification and the in-
terpreter implementing an equivalent wrapper. There-
fore, an administrator doesn’t have to program any im-
plementation of Fractal component. She only has to
describe the outline of the wrapper, including refer-
ences to some Java packages which provide reusable

2

basic functions for configuring the wrapped legacy
software (generally configuration files).

3.2 A language dedicated to architecture
description

Regarding the description of the architecture to be
deployed and administrated, our approach is to use a
graphical language for describing architectures. First,
a UML-based graphical description of such an archi-
tecture is much more intuitive than an ADL specifi-
cation, as it does’nt require expertise of the underly-
ing component model. Second, the described architec-
ture is more abstract than the previous ADL specifica-
tion, as it describes the general organisation of the ar-
chitecture (types of software, interconnection pattern)
in intension, instead of describing in extension all the
software instances that compose the architecture. This
is particularly interesting for grid applications where
thousands of servers may compose an architecture to
be deployed.

3.3 A language dedicated to deployment
description

An architecture can be projected on an abstraction
of the deployment environment. The environment ab-
straction is composed of abstract nodes. An abstract
node may correspond to a single machine or a group
of machines, in which case an allocation policy is as-
sociated with this group.

The projection of an architecture describes the num-
ber of instances that should be deployed in each ab-
stract node.

Regarding this aspect, we provide a language which
allows the description of a deployment environment
and the projection of a software architecture in this en-
vironment.

3.4 A language dedicated to reconfigura-
tion description

Regarding reconfiguration, our approach is to use
the UML graphical language for the description of
state diagrams. These state diagrams are used to define
workflows of operations that have to be performed for
reconfiguring the managed environment. One of the

main advantage of the introduced language, besides
simplicity, is that state diagrams manipulate the en-
tities described in the architectural schema (previous
subsection) and reconfigurations can only produce an
(concrete) architecture which comforms with the ar-
chitectural schema, thus enforcing reconfiguration cor-
rectness.

4 Tune Metamodeling

Our first experiments with Tune focussed on the use
of XML and UML to take advantage of many existing
open source tools. We used the graphical editors pro-
vided by the TOPCASED Eclipse-based toolkit [3] for
the description of architectures and reconfiguration di-
agrams.

However, the use of this unified language led us to
specialize (pragmatically but sometimes awckwardly)
its initial semantics in order to adapt it for the auto-
nomic computing field. Because it is difficult to take
into account this semantics specialization at the tools
level, the user is let with all the freedom offered by
UML.

For this reason, we are currently studying the possi-
bility to define a dedicated metamodel for autonomic
system management policies definition. This would al-
low us to decline textual or graphical editing tools, of-
fering a constraint, domain-specific and user-friendly
formalism. Although this work is still in progress, we
detail in this section the followed approach and the
promising results that we obtained. We present in a
first step the various points of view that we have taken
into account in defining an autonomic system like
Tune. We also introduce each corresponding meta-
model. We conclude this section by a presentation of
the first editing prototypes that we have already de-
fined.

4.1 Concerns about Tune Systems

As part of our initial work to define a modeling lan-
guage for system management policies, we have taken
into account four main concerns (fig. 2). We describe
each of them in the remainder of this section.

3

TUNe.ecore

RDL
.ecore

WDL
.ecore

DDL
.ecore

system
.TUNe

<<conformsTo>>

Fractal
ModelTUNe

Code Generator

Deployment
Description
Language

Wrapping
Description
Language

Reconfiguration
Description
Language

Configuration
Description
Language

CDL
.ecore

Figure 2. Concerns in Tune

4.1.1 The Configuration Description Language

The first one is the homogeneous definition of archi-
tecture of the application. We propose a simple inten-
tional architecture description language which allows
to reify the heterogenous structural architecture of the
legacy level. We call this language the Configuration
Description Language (CDL). The main subset of the
metamodel is depicted in Figure 3.

The main concept of this view is the SoftwareEle-
ment describing a particular type of software with its
own configuration, management, and independent life
cycle. Each SoftwareElement is described by a set
of properties (ownedAttributes), with an initial value
(defaultValue), which are used by the administrator to
reify the configurable attributes of the legacy software
that the SoftwareElement represents. Note that a par-
ticular software can be described by different Softwa-

Software
Element

filename: String

Attribute
name: String
type: DataType
default: Literal

Intentional
Link

name: String
multiplicity: Int

0..*
owned
Attributes

bindings 0..*
1 target

 Element

Interface
name: String

provided
 1

0..1 opposite

Figure 3. The (simplified) CDL

Software
Element

filename: String

Wrapper
name: String

elements
0..* wrapper

0..1

Method
name: String

0..*
methods

ownedParameter 0..*

Implementation
body: String1

imp

Parameter
name: String
type: DataType
default: Literal

Figure 4. The (simplified) WDL

reElements with different configuration properties.
The configuration language allows to describe an ar-

chitecture in intension. This means here that each de-
scribed SoftwareElement can be deployed into several
instances.

The architecture of the legacy level is intentionally
reified through the definition of bindings, allowing to
connect a SoftwareElement to another, and express-
ing a multiplicity and a role (name). The multiplicity
expresses the number of instances of the target Soft-
wareElement for each one of the source SoftwareEle-
ment. The role allows navigation with a query lan-
guage relying on OCL [9]. It is also possible to define
bi-directional bindings by defining an opposite bind-
ings.

4.1.2 The Wrapping Description Language

The second concern is the definition of a wrapper and
its relation with SoftwareElements. The corresponding
metamodel is presented in Figure 4.

A Wrapper describes methods which define ac-
tions that can be applied on the encapsulated software
component. A wrapper may be referenced by differ-
ent SoftwareElements (with different properties). A
Method can be parametrized (ownedParameter) with
any property (of the SoftwareElements) of the config-
uration description in which the wrapper is used, the
OCL-based navigation language allowing to fetch the
effective parameter values.

The method implementations (imp) are given in the
form of a reference to a program (currently a string
referring to a Java class).

Note that this view must be consistent with the ar-
chitectural view described with the CDL. We have thus
defined the OCL constraints to verify that the wrapper
associated with a software element defines at least the
methods provided by the interface.

4

Software
Element

filename: String

AbstractNode
name: String

node

1

Deployment
initial: Int

deployments 0..*

Policy
body: String policy

1

Figure 5. The (simplified) DDL

4.1.3 The Deployment Description Language

The third view in Tune, described by the metamodel
presented in Figure 5, is used to define by intention or
by extension, the real deployment of instances of each
software component on system’s nodes. For this, we
define for each SoftwareElement a set of Deployments,
describing a real number of instances (initial) to be de-
ployed on a node (AbtractNode).

Nodes are known as "abstract" because they define
a deployment policy (policy). Abstract nodes include
the deployment information required to implement a
deployment strategy, e.g. the physical address of a
(single) real node on which instances should be de-
ployed, or a list of physical addresses and an allocation
function (for a cluster).

Note that this view must be consistent with the view
described with the CDL. For instance, the number of
deployed instances must be compatible with the mul-
tiplicities described in the configuration.

4.1.4 The Reconfiguration Description Language

The last view makes possible to describe the life cy-
cle of a software element with schemas of automatic
configuration and reconfiguration. The described poli-
cies are triggered by endogenous (i.e. from the legacy
level) or exogenous (sent by the administrator or from
a workload) events defined from triggers (Trigger) for
each transition.

To describe this life cycle, we rely on state and ac-
tivity diagrams of UML2.0 [10, §12–§15]. A simpli-
fied representation is presented in Figure 6. A transi-
tion triggers the execution of an activity diagram (Au-
tonomicConfiguration) whose actions are a partially-
ordonned sequence of wrapper’s method calls.

4.2 Domain Specific Tools

One of the main motivations to have defined an ab-
stract syntax dedicated to Tune was to be able to pro-
vide domain-specific and user-friendly tools. For this
purpose, we use the set of generative tools provided by
the community of the MDE. This allows to generate
editors, with textual (e.g. TCS [7] or Syntaks [8]) or
graphical (e.g. Topcased [3] or GMF [5]) formalisms.

In Tune, we have currently defined a textual editor
for the WDL (a screenshot of the first prototype is de-
picted in Figure 7).

5 Conclusion & Perspectives

We are investigating the design and implementa-
tion of an autonomic system called Tune. Tune re-
lies on a component model in order to provide support
for encapsulating (wrapping) software, describing the
software architecture to manage and its deployment
in physical environment, and describing the dynamic
reconfiguration policies to be applied autonomously.
Our experiments with Tune led us to the conclusion
that higher-level support was required for assisting the
administrator in its policy description tasks.

For this purpose, our first experiments focused on
the use of the UML formalism (and numerous tools
that supports it, e.g. TOPCASED). These experiments
confirmed the interest of raising the abstraction level
but we had to specialize the UML semantics according
to the requirements of the considered field (autonomic

Software
Element

filename: String

<<UMLActivityDiagram>>
Autonomic
Configuration

name: String

<<UMLStateMachine>>
LifeCycle

behavior

0..1

Transition State
name: String

BehaviorTrigger

Event
event 1

triggers 0..* 0..1 effect

transitions 0..* 0..* states

0..*

0..*

1

1

Figure 6. The (simplified) RDL

5

Figure 7. Clustered J2EE servers with
MDE4Tune: the WDL textual editor

administration and the expression of Tune’s policies).
It was difficult to take into account this specialization
in the tools we reused.

We are currently working on a dedicated meta-
model. The expected benefits are two-fold: to provide
a formal definition of Tune’s policy description lan-
guages, to statically and dynamically validate the poli-
cies described by the administrators with customized
editors.

This position paper opens many perspectives on
which we are currently working. In the short term,
we hope to finalize the Tune metamodel and provide
some editing tools for the different points of view. The
Tune core team is currently extending the reconfigu-
ration capabilities of Tune and the metamodel and the
editing tools are evolving accordingly.

In the longer term, we plan to revisit the design
of the Tune system, considering that the management
layer (illustrated in Figure 1) should be managed as a
model (instead of a component architecture at the mid-
dleware level). This means that models would not only
be used to describe policies, but would further be used
to maintain the internal state of the Tune system.

We refer to this new MDE field as Model-Driven
System Management. We are convinced that it is now
essential to increase the abstraction level of software
management, not only during the design but also dur-
ing their development and administration.

References

[1] L. Broto, D. Hagimont, P. Stolf, N. Depalma, and
S. Temate. Autonomic management policy specifi-
cation in Tune. In 23rd Annual ACM Symposium on
Applied Computing, Fortaleza, Brésil, March 2008.

[2] E. Bruneton, T. Coupaye, M. Leclercq, V. Quema,
and J.-B. Stefani. The Fractal Component Model
and its Support in Java. In Software - Practice
and Experience, special issue on "Experiences with
Auto-adaptive and Reconfigurable Systems", 36(11-
12):1257-1284, September 2006.

[3] P. Farail, P. Gaufillet, A. Canals, C. L. Camus, D. Sci-
amma, P. Michel, X. Crégut, and M. Pantel. The TOP-
CASED project: a Toolkit in OPen source for Critical
Aeronautic Systems Design. In Embedded Real Time
Software, Toulouse, Jan. 2006.

[4] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self adap-
tation with reusable Infrastructure. In IEEE Com-
puter, 37(10), 2004.

[5] GMF. Graphical Modeling Framework. http://
www.eclipse.org/gmf/.

[6] D. Hagimont, S. Bouchenak, N. D. Palma, and
C. Taton. Autonomic Management of Clustered Ap-
plications. In IEEE International Conference on Clus-
ter Computing, Barcelona, September 2006.

[7] F. Jouault, J. Bézivin, and I. Kurtev. TCS: a DSL for
the specification of textual concrete syntaxes in model
engineering. In S. Jarzabek, D. C. Schmidt, and T. L.
Veldhuizen, editors, 5th International Conference on
Generative Programming and Component Engineer-
ing, pages 249–254, Portland, Oregon, USA, Oct.
2006. ACM.

[8] P.-A. Muller, F. Fleurey, F. Fondement, M. Has-
senforder, R. Schneckenburger, S. Gérard, and J.-
M. Jézéquel. Model-Driven Analysis and Synthe-
sis of Concrete Syntax. In O. Nierstrasz, J. Whit-
tle, D. Harel, and G. Reggio, editors, 9th IEEE/ACM
International Conference on Model Driven Engineer-
ing Languages and Systems, volume 4199 of Lecture
Notes in Computer Science, pages 98–110, Genova,
Italy, Oct. 2006. Springer.

[9] Object Management Group, Inc. UML Object Con-
straint Language (OCL) 2.0 Specification, June 2005.

[10] Object Management Group, Inc. Unified Modeling
Language (UML) 2.1.1 Superstructure, Feb. 2007. Fi-
nal Adopted Specification.

[11] P. Oriezy, M. Gorlick, R. Taylor, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, and A.Wolf. An
Architecture-Based Approach to Self-Adaptive Soft-
ware. IEEE Intelligent Systems 14(3), 1999.

6

