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Abstract: 
This paper describes our experience in the implementation of the Guide distributed object-
oriented system on top of the Mach 3.0 microkernel. While many experimental distributed 
object-oriented environments have been implemented on Unix and much less on a bare 
machine, the emerging microkernel technology seems to provide a well suited trade-off between 
these two approaches. Microkernels provide modularity and flexib ility for the design of a 
distributed operating system based on the client-server architecture, support of lightweight 
processes, efficient inter-process communication and the ability to implement flexible memory 
management policies. The goal of this paper is to provide an evaluation of the suitability of 
these features for the construction of distributed object-oriented operating systems. 

 

1. Introduction 

Several approaches have been considered in projects aiming at implementing a 
distributed object-oriented operating system. Some of them chose to build the entire 
system from scratch – i.e. on a bare machine (e.g. Clouds [Dasgupta 90]), but most  
of them have chosen to implement a layer on top of the Unix system (e.g. Emerald 
[Black 86], Argus [Liskov 87]). For some years a number of research groups have 
been experimenting the emerging microkernel technology – mainly Mach [Acetta 86] 
and Chorus[Rozier 88] - for building such distributed systems. 

The goal of the Guide project1 (Grenoble Universities Integrated Distributed 
Environment) is to provide a distributed platform for the support of object-oriented 
applications. The primary target applications are cooperative applications, such as 
multimedia document handling and software engineering, running on a set of 
heterogeneous workstations interconnected via a local area network. 

A first phase of the project (1987-89) delivered a prototype on top of Unix. A 
second phase, started in 1990, intended to build a new version of the Guide platform 
on top of the Mach 3.0 microkernel. The purpose of this paper is to describe the main 
lessons learned from this experiment about the adequacy of the microkernel techno-
logy for building a distributed object-oriented operating system. 

 
A preliminary experience with Mach 2.5 and Chorus, described in [Boyer 91], 

convinced us that the microkernel technology should provide a good framework for 
building such a system. This led us to redesign and implement a new version of the 
Guide system using Mach 3.0 and the OSF/1 MK server.  

Guide provides a distributed virtual machine which is accessible to application 
programmers through object-oriented languages. Distributed computations, object 
sharing and persistence are key concepts of the Guide virtual machine. The Guide 
system provides the basic mechanisms which implement the functions of the Guide 
virtual machine. 

                                                 
1 Guide is a component of the Comandos ESPRIT project [Balter 91]. 



 
 

 Our main concern when designing this system was to define a modular and 
open architecture and to provide a generic support for object-oriented languages (i.e. 
to support different object-oriented languages such as the Guide language and a 
persistent distributed extension of C++). The choice of a microkernel as hosting 
environment was a good approach as it provides the required functions for building 
such a system, especially as far as memory management and communication are 
concerned. 

In the next section, we present a brief overview of the Guide model, including 
its object and execution model and its protection model. Section 3 briefly presents the 
Mach features that were used for the implementation of the system. Section 4 
describes the management of execution structures. Section 5 is devoted to object 
management. Section 6 presents the lessons of this experiment and discusses the 
suitability of microkernels for system implementation. Finally, the conclusion and the 
perspectives  are given in section 7. 

2. Overview of the Guide model 

In this section, we give a brief overview of the Guide model. This model is em-
bedded in object-oriented languages such as an extended version of C++ or the Guide 
language. The characteristics of the Guide language may be found in [Krakowiak 90]. 

2.1. Object and execution model 

In Guide, objects are passive, i.e. they are completely dissociated from 
execution structures. The execution unit is a job (which roughly corresponds to an 
“application”). A job is a potentially distributed virtual space, in which one or several 
activities (sequential threads of control) are executed. Objects are dynamically bound 
into a job’s virtual space as a result of method calls; jobs and activities spread out to 
remote locations if they need to access remotely located objects. The virtual space of 
a job is composed of several virtual address spaces, possibly distributed on several 
machines; this distribution is transparent to the application. The location of the 
objects is determined by the system according to a location policy, currently fixed by 
default. 

Jobs and activities communicate by means of shared objects and there is no ex-
plicit message passing. Objects are persistent (i.e. an object’s lifetime is not related to 
that of the jobs or activities which use it). In order to start an application, a user needs 
to specify an initial object and an initial method. A job is then created, the initial 
object is bound within this job, and an activity is started by a call to the initial method 
of that object. Other objects are then linked into the job as needed according to the 
calling pattern. Applications may explicitly create new objects, new activities, and 
new jobs. 

The object memory is organized as a two-level object store. Both levels are 
transparently distributed. The Virtual Object Memory (VOM) provides support for 
executing methods on shared, synchronized objects. The Secondary Storage (SS) 
provides permanent storage space for objects. The VOM acts as a cache for the SS. 
All objects are persistent; garbage collection is performed in the SS. Objects are 
named by unique system-wide identifiers, allocated at creation time. 

2.2. The protection model 

The protection model was defined to fulfil the following requirements: 
• Ensure isolation between users (i.e. an error in a user’s object must not affect 

the objects belonging to other users) and between applications (i.e. an error 



 
 

in an application must not affect applications that do not share objects with 
it). 

• Ensure consistency with the object model. In other words, access rules must 
be defined in terms of the access methods applicable to objects rather than in 
terms of read, write or execute operations. The unit of protection is the 
object; in addition, the model must support users and groups. 

• Solve the delegation problem. In other words, it must be possible to extend 
temporarily the rights of a user on a given object for the execution of a 
specific operation. This problem is precisely described in [Hagimont 92]. 

 
The design of the protection model relies on the following concepts: 
• User. A user is named by the system using an identifier (Uid). 
• Owner. Each object is owned by a user; ownership on a given object is inher-

ited from that of the creator object. 
 
In this paper, we do not describe the implementation of all these capabilities, 

but we focus on user and application isolation for which the use of Mach was very 
helpful. 

3. Presentation of some Mach features 

 This section presents the basic Mach abstractions that were used in the imple-
mentation of the Guide system. 

 
 
Kernel Abstractions  
The Guide object and execution model is based on the use of the following 

Mach abstractions: 
• Task: a task is a set of resources such as memory or communication ports. It 

can be viewed as a virtual address space divided into regions within which 
threads of control are executed. It provides a protected access to system re-
sources (such as processors, ports). 

• Thread: A thread represents a sequential activity. A thread runs within a 
task; there can be multiple threads running within a task, with flexible 
scheduling facility. Resources of a task are shared by all the threads of the 
task. The traditional concept of a process  is represented by a single thread 
running within a task. 

• Port: A port is a communication channel, which is implemented as a 
message queue managed and protected by the kernel. A port is only 
accessible via send / receive capabilities (rights). 

 
Memory Management 
The Mach kernel provides mechanisms to support large, potentially sparse 

virtual address spaces [Mach 92b]. Each task has an associated address map 
(maintained by the kernel) which controls the translation of a virtual address in the 
task’s address space into a physical address. The physical memory is used as a cache 
for the virtual address spaces of tasks. The Mach kernel does not implement by itself 
all of this caching; some special user tasks, called memory managers or external 
pagers, participate in this management. 

A memory manager allows a task to create memory objects (i.e., chunks of 
memory identified by ports). To address a memory object, a thread maps it within its 



 
 

virtual memory (i.e., the address space of its task). Once an object is mapped, page-
faults on this object are treated in the same way as “normal” page faults. The kernel 
sends page-fault message to the memory manager to which the object belongs. 

4. Execution structures management on Mach 3.0 

We describe in this section the implementation of the execution structures of the 
Guide system on top of Mach 3.0. The first sub-section presents this mapping on 
Mach, using tasks and threads, and the second sub-section discusses how Mach 
features allowed us to fulfill the protection requirements that relates to execution 
structures. 

4.1. Jobs and activities 

The computational model of Guide defines two major entities: jobs and 
activities. These entities being potentially distributed, they are represented on the 
nodes they span by some local components.  

A job is represented by a task on each node it spans (if we do not consider pro-
tection at this stage of the presentation). Activities in jobs are implemented by threads 
running in the tasks that implement the jobs. An activity that has visited several nodes 
will be represented by a thread in each task. An activity can change its execution node 
through a remote object call, following a synchronous scheme. 
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g. 1: Jobs and distribution 

This figure shows a job running on three nodes. Activities may have spread on the three nodes. 
For example, activity A1 is represented on node 1 and on node 2, while activity A2 is 
represented on node 2 and on node 3. This spreading of A1 and A2 ensures that this job has 
some local components on these nodes. 
 
Therefore, since the Guide execution model could be considered as a distributed 

version of the Mach execution model, Mach features were very well suited for its 
support. 

Mach IPC is used for remote object call. A port is associated to each thread that 
implements a local component of an activity. This thread receives execution requests 
on that port from other components. At a time, there is only one active component of 
an activity; the others are waiting for a remote call request. For this purpose, Mach 
ports are very convenient because the sender of a message has no need to care about 
the location of the port in the network, and the interface is the same whether the task 
that owns the port is local or not. 

Since Mach does not provide remote creation primitives, a particular daemon is 
present on each node to allow the creation of a local component for a job (or for an 



 
 

activity) on that node. This node daemon registers the communication port associated 
to each component of a Guide activity. The first time an activity spreads from one 
node to another, the daemon is queried and it returns the port to which the request 
must be sent. For subsequent remote invocations, the port of the target activity is 
cached in the task of the calling activity. 

4.2. Protection 

The protection requirements that relate to isolation are two-fold: to guarantee 
mutual isolation between jobs and to enforce user isolation despite the sharing of ob-
jects. 

Jobs do not share local components (tasks) because we want to guarantee 
mutual isolation between jobs.  

In order to enforce isolation between users, we decided that objects of different 
owners must be mapped in different tasks. Therefore, a job may have several 
representatives on a node, each of them associated to a different object owner. An 
activity running in an object owned by user X  which invokes an operation on an 
object owned by user Y, crosses the task boundaries and thus is interpreted by the 
system. Therefore an addressing error in a method of an object can only affect objects 
having the same owner. A truly object-oriented protected scheme would have 
required a separate task for each object, in order to prevent an error in an object from 
affecting another object, as it is the case in a real segmented-based operating systems 
like Clouds [Dasgupta 90]. This solution is not efficiently applicable here, because 
the average object size is small (see section 5). Figure 2 illustrates the structure of 
jobs including protection aspects. 
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Fig. 2: Jobs and protection 
This figure shows a job whose components (tasks) are distributed among three nodes. This job 
uses objects of different owners. These objects are respectively mapped in different tasks in 
order to guarantee owner’s isolation. The plain arrows correspond to object calls between 
objects that belong to different owners. 
 
The current implementation associates a Mach port to each local component of 

an activity (thread) in a task, and the thread waits for a new execution request as it is 
done in the distributed case. 

Hence a task which is a local component of a job will only have rights on ports 
that are associated to local components of activities of the same job. It will not be 
possible for an activity to send an execution request to an activity that belongs to 



 
 

another job. Using ports ensures that activities belonging to different jobs will not 
interfere. 

Another benefit of Mach ports that relates to protection appears in our solution 
for the delegation problem. In our solution (that could be described in a longer paper), 
we have to make some checks each time an object call involves two objects that 
belong to different owners. When such a call occurs, the object call crosses task 
boundaries, and the check can be done in the called task, but the problem comes from 
the fact that the two tasks that are involved may be associated to the same object 
owner on different nodes, in which case no check is needed. In fact, we need to 
authentify the owner associated with the calling task. In our implementation, we 
allocate two ports for each local component of an activity: the first one (called the 
twin port) is given to all the tasks (local component of the job) that are associated to 
the same object owner in the job, the second (called the public port) is given to all the 
other local components of the job. Therefore, a thread in a task that receives an object 
call request has to do the check if the message is received on the public port. The 
figure 3 illustrates this mechanism. 

We also have to authenticate a task which is a local component of a job when it 
asks for a service to the node daemon of a node. The port that  identifies a task in 
Mach is used as a capability in our system. A task that requests a remote invocation to 
the node daemon of a node authenticates itself by giving its private port 
(mach_task_self). It allows the node daemon to authenticate the job which requests a 
service. The same mechanism is used when a mapping request is sent to a memory 
manager that will have to check if the mapping is allowed for the object owner 
associated to the task (see section 5). 
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Fig. 3: the task authentication mechanism 
This figure presents a job composed of five tasks. Tasks T1 and T3 contain objects belonging to 
Owner1, while task T2 is associated to Owner3. A method call from an object within T2 to an 
object within T1 will use the public port (plain arrow), while a method call from T3 will use the 
twin port (dashed arrow). 

5. Object management on Mach 3.0 

We describe in this section the implementation of the Guide Virtual Object 
Memory on top of Mach 3.0. The first sub-section focuses on object sharing using the 
memory manager facility; the second sub-section deals with persistent object storage. 



 
 

5.1. Object sharing 

Mach imposes two limitations for the design of the Guide system. First, Mach 
provides a limited number of system resources (such as ports) per task. This does not 
allow the potential sharing of many objects by two different jobs. Moreover, the unit 
of mapping in the address space of a task is a set of pages, which is much greater than 
the average size of our objects (a few hundred bytes). For these two reasons, we 
introduced the concept of cluster (a cluster is a set of objects) in order to support the 
sharing of fine-grained objects. Clusters also allow to group objects into pages in 
order to minimize object transfers between VOM and SS. As a cluster may contain 
several objects, the sharing of an object implies the sharing of other objects. Thus, all 
the objects in a cluster must belong to the same owner. 

 
Microkernels provide the memory manager facility. A memory manager is a 

user process which allows other processes to map a chunk of memory, identified by a 
port, into their virtual address spaces. From the microkernel point of view, the 
memory manager is responsible for handling page faults that may arise on this chunk 
of memory. We used this facility to implement clusters. Clusters are managed by a set 
of memory managers that we call cluster managers. These managers are distributed 
among the network and may cooperate together. A cluster manager implements two 
kinds of functions: 

• mapping, sharing and protection control; 
• paging functions such as page- in/page-out requests from the Mach kernel 

(the interface between the kernel and the cluster manager is defined in [Mach 
92a]). 

Figure 4 depicts the interactions between jobs, the microkernel and the cluster 
managers. 
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Fig. 4: Cluster mapping 
This figure depicts the sharing of the cluster Clu1 between tasks T1 and T2. In order to map that 
cluster, both tasks send a clu_Map  request to the cluster manager. After checking the rights of 
the tasks, the cluster manager returns a port (P29) which will be used by the tasks when 
mapping the cluster. Access to the cluster will cause page faults that will be redirected by the 
kernel to the cluster manager using the port P29. 

5.2. Object storage 

In the computational model defined above, we made the distinction between 
two levels of memory: the VOM which provides support for method executions and 
which consists of the union of physical memory and the swap disk spaces of each 
node, and the SS, which provides long term storage support. The interface between 



 
 

VOM and SS is defined in terms of load and store operations. The separation between 
VOM and SS is useful for the following reasons: 

• Modularity (i.e., ability to reuse existing storage servers such as AFS or 
Pegasus [Leslie 93]), 

• Security (i.e., access control to the persistent storage interface), 
• Quality of service (i.e., servers can provide different storage policies such as 

reliability, fast access, etc.). 
  
Moreover, movements of clusters between the VOM and the SS are entirely 

managed by cluster managers. This allows this transfer to be performed very 
efficiently. Transfers are performed on demand (i.e. the whole cluster is not 
transferred in VOM at mapping time): a page is only loaded in VOM when the cluster 
manager receives a fault on this page. This ensures that the transfer occurs only for 
those pages that are actually used by jobs. Furthermore, when the cluster manager has 
to store the modified image of a cluster in SS, only dirty pages are copied to SS. This 
scheme allows the traffic between VOM and SS to be reduced. 

6. Evaluation 

In this section, we summarize the lessons learned from our experience in 
building the Guide system on top of Mach 3.0. We first discuss the adequacy of 
microkernels for the implementation of our system. Then, we present some 
performance figures performed on our prototype. 

6.1. Adequacy of Mach 3.0 

We have shown in the description of the implementation of the Guide system 
that the microkernel technology provides a well suited platform for the design of a 
distributed object-oriented operating system.  

 
As mentioned above, the Guide model can be viewed as a distributed version of 

the Mach model. Consequently the mapping of the Guide abstractions (jobs and 
activities) on the Mach abstractions (tasks and threads) was straightforward. In Guide, 
an application involves a potentially distributed virtual address space called a job 
within which several activities may run. Jobs and activities are naturally represented 
by a set of tasks and threads running on the nodes visited by the application. 

The benefits of the port concept are twofold: 
• The port provides a location transparent address for message passing 

between tasks. Therefore, in our implementation, we were able to develop 
and debug the entire Guide kernel on a single machine, since message 
passing between tasks on a single machine or on different machines have the 
same interface. The step between a centralized prototype and the fully 
distributed version was quite small compared to the former experiment 
achieved on top of Unix. 

• Mach ports are protected in the sense that a port cannot be used unless it has 
been explicitly given by a task that has the required rights on this port. This 
allows the implementation of the isolation requirements for jobs and users. 
This also allows the authentication of these user-level tasks when they 
cooperate with the Guide kernel. 

 
The ability to design our own memory manager was one of the key benefits 

from using the microkernel approach: 



 
 

•  It allows a simple implementation of object sharing between different nodes, 
which was not straightforward on Unix.  

• It allows the implementation of flexible consistency policies according to ap-
plication requirements.  

• It allows the efficient management of fine-grained objects. The use of 
memory managers allows a clear separation between the object as unit of 
addressing, the cluster as unit of mapping, and the page as unit for I/O 
transfers. This allows an optimization of the multiple facets of memory 
management. 

• Cluster managers enforce the protection model by controlling user rights on 
objects into a protected server. In addition, clusters are not made visible to 
applications. This also improves the protection scheme of the system. 

 
However the implementation of Guide suffered from some missing features 

which are listed below: 
• The ability to create a task on a remote node would greatly simplify the 

overall architecture and especially the management of the execution 
structures.  

• Protected ports have a major drawback in a distributed environment: applica-
tions cannot share ports. Should this facility be available, finding a specific 
task within a job would have been improved, for example by removing the 
need to contact the node daemon. 

• Port groups would have been convenient for managing distributed entities 
such as jobs and activities. They would also have been useful for providing 
fault tolerance facilities. 

• Implementation of synchronisation tools such as semaphore objects shared 
between task located on the same or different nodes is not an easy work. The 
designer should either provide a semaphore server or ensure that all threads 
sharing a semaphore object know each other’s ports. 

• As proposed in [McNamee 90], it would be interesting to provide the ability 
to manage page replacement in physical memory at the level of a cluster 
manager, since a cluster manager does have some knowledge about cluster 
usage that the kernel cannot manage. For example in the current 
implementation, cluster managers collect and store information about page 
access or cluster sharing which could allow improved paging. 

• It is not possible currently to develop servers on Mach independently of 
OSF/1 (for example to get hight level I/O functionalities). 

6.2. Performance 

The implementation of Guide-2 started at the end of 1991, using first Mach-3.0 
and then Mach 3.0/NORMA both with OSF-1 /MK-13 on Bull-Zenith P.C. i486 (33 
MHz) connected to a 10 Mb Ethernet. Mach-3.0/NORMA is a version of Mach-3.0 
that allows to consider a set of workstations connected by a LAN as a multiprocessor. 
NORMA integrates the network communication inside the microkernel, with a 
substantial gain of performance (a factor of about 50). Table 1 gives some 
preliminary figures. These figures measure the elapsed time of the basic functions 
provided by the cluster manager: cluster creation, cluster mapping, handling a read or 
write page fault and cluster unmapping.  In this experiment clusters in secondary 
storage were simply implemented by Unix files. A more elaborate version of the 
storage server is under way. 

 



 
 

Clusters Operations Time (in ms) 
clu_Create1 130,0 
clu_Map 10,0 
page_read2 6,8 
page_write 6,8 
clu_Unmap3 124,0 

 
Creating a cluster is a cost intensive operation since it requires to create two 

Unix files: one for storing the cluster descriptor and one for the actual cluster. In 
addition, this operation involves an access to a specific file containing the information 
used to allocate a global unique name for the cluster. The cost of this operation will 
be significantly reduced when using the final version of the storage server. 

Mapping a cluster requires to read the descriptor of the cluster in order to pick 
up its size and its owner. In the upcoming version of the storage server cluster 
descriptors will be cached in main memory to reduce the overhead of accessing the 
cluster descriptor. 

The figures related to page faults (page_read and page_write) take into account 
the cache management associated to the Unix file system.  

Cluster unmapping implies to store all modified pages in SS. In our scenario all 
pages were modified; this explains the relatively high value for this figure. Real appli-
cations are not expected to update all pages at each execution; if it were the case, the 
cluster manager would obviously  become a bottleneck for the whole system. 

 
To conclude this section, we are convinced that these results are very promising 

regarding the level of functionality provided by the cluster machine (i.e.;, object shar-
ing, persistence and protection) and the benefits, in terms of security and modularity, 
offered by our architecture. The performance is expected to be slightly improved 
when the implementation of a full storage server will replace the current 
implementation based on Unix files.  

7. Conclusion 

We have shown in this paper how we used Mach 3.0 features in the 
implementation of the Guide system. The Guide system provides an execution 
environment for an object-oriented programming language. The main features of the 
system are: persistent shared objects, supported by a two-level distributed storage, 
transparent distribution of objects, execution model based on concurrent, distributed 
jobs and activities,  and support for protection. 

The objective of this paper was to assess our three year experience in using 
Mach and to present the lessons learned from this work concerning the adequacy of 
microkernels for building distributed systems. Systems like Mach and Chorus are 
organized as a set of servers which are managed by a minimal microkernel. The 
flexibility provided by this architecture greatly helps the design of distributed 
systems. Furthermore modularity allows different parts of the system to be designed 
and tested separately on the one hand, and various resource management policies to 
be experimented on the other hand.  

 

                                                 
1 Clusters are 10 pages long (40960 bytes). 
2 Pages are transfered from SS to VOM (in read or write case). 
3 Pages are stored from execution memory to persistent store. 



 
 

The Guide prototype is currently running on a network of i486-based machines 
using Mach 3.0 and the OSF/1 MK server. The implementation is nearly complete. 
Several applications such as a distributed co-operative spreadsheet are already 
running, that allow debugging and tuning of the system. These experiments have 
shown that the standard version of Mach 3.0 performs poorly over the network. 
Therefore, in co-operation with OSF-RI, we are currently experimenting the NORMA 
version of Mach 3.0 to reduce the cost of remote invocations. Preliminary 
experiments with this advanced version are very encouraging.  
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