

Is the Microkernel Technology well suited for the Support of
Object-Oriented Operating Systems: the Guide Experience

R. Balter, P. Y. Chevalier, A. Freyssinet, D. Hagimont, S. Lacourte and

X. Rousset de Pina

Unité Mixte Bull-IMAG/Systèmes, 2 avenue de Vignate, 38610 Gières, France
Internet: hagimont@imag.fr - Phone: +33 76 63 48 48

Abstract:
This paper describes our experience in the implementation of the Guide distributed object-
oriented system on top of the Mach 3.0 microkernel. While many experimental distributed
object-oriented environments have been implemented on Unix and much less on a bare
machine, the emerging microkernel technology seems to provide a well suited trade-off between
these two approaches. Microkernels provide modularity and flexib ility for the design of a
distributed operating system based on the client-server architecture, support of lightweight
processes, efficient inter-process communication and the ability to implement flexible memory
management policies. The goal of this paper is to provide an evaluation of the suitability of
these features for the construction of distributed object-oriented operating systems.

1. Introduction

Several approaches have been considered in projects aiming at implementing a
distributed object-oriented operating system. Some of them chose to build the entire
system from scratch – i.e. on a bare machine (e.g. Clouds [Dasgupta 90]), but most
of them have chosen to implement a layer on top of the Unix system (e.g. Emerald
[Black 86], Argus [Liskov 87]). For some years a number of research groups have
been experimenting the emerging microkernel technology – mainly Mach [Acetta 86]
and Chorus[Rozier 88] - for building such distributed systems.

The goal of the Guide project1 (Grenoble Universities Integrated Distributed
Environment) is to provide a distributed platform for the support of object-oriented
applications. The primary target applications are cooperative applications, such as
multimedia document handling and software engineering, running on a set of
heterogeneous workstations interconnected via a local area network.

A first phase of the project (1987-89) delivered a prototype on top of Unix. A
second phase, started in 1990, intended to build a new version of the Guide platform
on top of the Mach 3.0 microkernel. The purpose of this paper is to describe the main
lessons learned from this experiment about the adequacy of the microkernel techno-
logy for building a distributed object-oriented operating system.

A preliminary experience with Mach 2.5 and Chorus, described in [Boyer 91],

convinced us that the microkernel technology should provide a good framework for
building such a system. This led us to redesign and implement a new version of the
Guide system using Mach 3.0 and the OSF/1 MK server.

Guide provides a distributed virtual machine which is accessible to application
programmers through object-oriented languages. Distributed computations, object
sharing and persistence are key concepts of the Guide virtual machine. The Guide
system provides the basic mechanisms which implement the functions of the Guide
virtual machine.

1 Guide is a component of the Comandos ESPRIT project [Balter 91].

 Our main concern when designing this system was to define a modular and
open architecture and to provide a generic support for object-oriented languages (i.e.
to support different object-oriented languages such as the Guide language and a
persistent distributed extension of C++). The choice of a microkernel as hosting
environment was a good approach as it provides the required functions for building
such a system, especially as far as memory management and communication are
concerned.

In the next section, we present a brief overview of the Guide model, including
its object and execution model and its protection model. Section 3 briefly presents the
Mach features that were used for the implementation of the system. Section 4
describes the management of execution structures. Section 5 is devoted to object
management. Section 6 presents the lessons of this experiment and discusses the
suitability of microkernels for system implementation. Finally, the conclusion and the
perspectives are given in section 7.

2. Overview of the Guide model

In this section, we give a brief overview of the Guide model. This model is em-
bedded in object-oriented languages such as an extended version of C++ or the Guide
language. The characteristics of the Guide language may be found in [Krakowiak 90].

2.1. Object and execution model

In Guide, objects are passive, i.e. they are completely dissociated from
execution structures. The execution unit is a job (which roughly corresponds to an
“application”). A job is a potentially distributed virtual space, in which one or several
activities (sequential threads of control) are executed. Objects are dynamically bound
into a job’s virtual space as a result of method calls; jobs and activities spread out to
remote locations if they need to access remotely located objects. The virtual space of
a job is composed of several virtual address spaces, possibly distributed on several
machines; this distribution is transparent to the application. The location of the
objects is determined by the system according to a location policy, currently fixed by
default.

Jobs and activities communicate by means of shared objects and there is no ex-
plicit message passing. Objects are persistent (i.e. an object’s lifetime is not related to
that of the jobs or activities which use it). In order to start an application, a user needs
to specify an initial object and an initial method. A job is then created, the initial
object is bound within this job, and an activity is started by a call to the initial method
of that object. Other objects are then linked into the job as needed according to the
calling pattern. Applications may explicitly create new objects, new activities, and
new jobs.

The object memory is organized as a two-level object store. Both levels are
transparently distributed. The Virtual Object Memory (VOM) provides support for
executing methods on shared, synchronized objects. The Secondary Storage (SS)
provides permanent storage space for objects. The VOM acts as a cache for the SS.
All objects are persistent; garbage collection is performed in the SS. Objects are
named by unique system-wide identifiers, allocated at creation time.

2.2. The protection model

The protection model was defined to fulfil the following requirements:
• Ensure isolation between users (i.e. an error in a user’s object must not affect

the objects belonging to other users) and between applications (i.e. an error

in an application must not affect applications that do not share objects with
it).

• Ensure consistency with the object model. In other words, access rules must
be defined in terms of the access methods applicable to objects rather than in
terms of read, write or execute operations. The unit of protection is the
object; in addition, the model must support users and groups.

• Solve the delegation problem. In other words, it must be possible to extend
temporarily the rights of a user on a given object for the execution of a
specific operation. This problem is precisely described in [Hagimont 92].

The design of the protection model relies on the following concepts:
• User. A user is named by the system using an identifier (Uid).
• Owner. Each object is owned by a user; ownership on a given object is inher-

ited from that of the creator object.

In this paper, we do not describe the implementation of all these capabilities,

but we focus on user and application isolation for which the use of Mach was very
helpful.

3. Presentation of some Mach features

 This section presents the basic Mach abstractions that were used in the imple-
mentation of the Guide system.

Kernel Abstractions
The Guide object and execution model is based on the use of the following

Mach abstractions:
• Task: a task is a set of resources such as memory or communication ports. It

can be viewed as a virtual address space divided into regions within which
threads of control are executed. It provides a protected access to system re-
sources (such as processors, ports).

• Thread: A thread represents a sequential activity. A thread runs within a
task; there can be multiple threads running within a task, with flexible
scheduling facility. Resources of a task are shared by all the threads of the
task. The traditional concept of a process is represented by a single thread
running within a task.

• Port: A port is a communication channel, which is implemented as a
message queue managed and protected by the kernel. A port is only
accessible via send / receive capabilities (rights).

Memory Management
The Mach kernel provides mechanisms to support large, potentially sparse

virtual address spaces [Mach 92b]. Each task has an associated address map
(maintained by the kernel) which controls the translation of a virtual address in the
task’s address space into a physical address. The physical memory is used as a cache
for the virtual address spaces of tasks. The Mach kernel does not implement by itself
all of this caching; some special user tasks, called memory managers or external
pagers, participate in this management.

A memory manager allows a task to create memory objects (i.e., chunks of
memory identified by ports). To address a memory object, a thread maps it within its

virtual memory (i.e., the address space of its task). Once an object is mapped, page-
faults on this object are treated in the same way as “normal” page faults. The kernel
sends page-fault message to the memory manager to which the object belongs.

4. Execution structures management on Mach 3.0

We describe in this section the implementation of the execution structures of the
Guide system on top of Mach 3.0. The first sub-section presents this mapping on
Mach, using tasks and threads, and the second sub-section discusses how Mach
features allowed us to fulfill the protection requirements that relates to execution
structures.

4.1. Jobs and activities

The computational model of Guide defines two major entities: jobs and
activities. These entities being potentially distributed, they are represented on the
nodes they span by some local components.

A job is represented by a task on each node it spans (if we do not consider pro-
tection at this stage of the presentation). Activities in jobs are implemented by threads
running in the tasks that implement the jobs. An activity that has visited several nodes
will be represented by a thread in each task. An activity can change its execution node
through a remote object call, following a synchronous scheme.

O1

A1
A2

O3
O5

O4 06

O8 O9

N
OD

E
1

N
OD

E
2

N
OD

E
3

JOB

Fi
g. 1: Jobs and distribution

This figure shows a job running on three nodes. Activities may have spread on the three nodes.
For example, activity A1 is represented on node 1 and on node 2, while activity A2 is
represented on node 2 and on node 3. This spreading of A1 and A2 ensures that this job has
some local components on these nodes.

Therefore, since the Guide execution model could be considered as a distributed

version of the Mach execution model, Mach features were very well suited for its
support.

Mach IPC is used for remote object call. A port is associated to each thread that
implements a local component of an activity. This thread receives execution requests
on that port from other components. At a time, there is only one active component of
an activity; the others are waiting for a remote call request. For this purpose, Mach
ports are very convenient because the sender of a message has no need to care about
the location of the port in the network, and the interface is the same whether the task
that owns the port is local or not.

Since Mach does not provide remote creation primitives, a particular daemon is
present on each node to allow the creation of a local component for a job (or for an

activity) on that node. This node daemon registers the communication port associated
to each component of a Guide activity. The first time an activity spreads from one
node to another, the daemon is queried and it returns the port to which the request
must be sent. For subsequent remote invocations, the port of the target activity is
cached in the task of the calling activity.

4.2. Protection

The protection requirements that relate to isolation are two-fold: to guarantee
mutual isolation between jobs and to enforce user isolation despite the sharing of ob-
jects.

Jobs do not share local components (tasks) because we want to guarantee
mutual isolation between jobs.

In order to enforce isolation between users, we decided that objects of different
owners must be mapped in different tasks. Therefore, a job may have several
representatives on a node, each of them associated to a different object owner. An
activity running in an object owned by user X which invokes an operation on an
object owned by user Y, crosses the task boundaries and thus is interpreted by the
system. Therefore an addressing error in a method of an object can only affect objects
having the same owner. A truly object-oriented protected scheme would have
required a separate task for each object, in order to prevent an error in an object from
affecting another object, as it is the case in a real segmented-based operating systems
like Clouds [Dasgupta 90]. This solution is not efficiently applicable here, because
the average object size is small (see section 5). Figure 2 illustrates the structure of
jobs including protection aspects.

O1
A1

A2

O3
O5

O4
06

O8 O9

NO
DE

1

NOD
E

2

N
OD

E
3

OWNER2OWNER3

JOB

O
W

N
E

R1

Fig. 2: Jobs and protection
This figure shows a job whose components (tasks) are distributed among three nodes. This job
uses objects of different owners. These objects are respectively mapped in different tasks in
order to guarantee owner’s isolation. The plain arrows correspond to object calls between
objects that belong to different owners.

The current implementation associates a Mach port to each local component of

an activity (thread) in a task, and the thread waits for a new execution request as it is
done in the distributed case.

Hence a task which is a local component of a job will only have rights on ports
that are associated to local components of activities of the same job. It will not be
possible for an activity to send an execution request to an activity that belongs to

another job. Using ports ensures that activities belonging to different jobs will not
interfere.

Another benefit of Mach ports that relates to protection appears in our solution
for the delegation problem. In our solution (that could be described in a longer paper),
we have to make some checks each time an object call involves two objects that
belong to different owners. When such a call occurs, the object call crosses task
boundaries, and the check can be done in the called task, but the problem comes from
the fact that the two tasks that are involved may be associated to the same object
owner on different nodes, in which case no check is needed. In fact, we need to
authentify the owner associated with the calling task. In our implementation, we
allocate two ports for each local component of an activity: the first one (called the
twin port) is given to all the tasks (local component of the job) that are associated to
the same object owner in the job, the second (called the public port) is given to all the
other local components of the job. Therefore, a thread in a task that receives an object
call request has to do the check if the message is received on the public port. The
figure 3 illustrates this mechanism.

We also have to authenticate a task which is a local component of a job when it
asks for a service to the node daemon of a node. The port that identifies a task in
Mach is used as a capability in our system. A task that requests a remote invocation to
the node daemon of a node authenticates itself by giving its private port
(mach_task_self). It allows the node daemon to authenticate the job which requests a
service. The same mechanism is used when a mapping request is sent to a memory
manager that will have to check if the mapping is allowed for the object owner
associated to the task (see section 5).

T1

N
O

D
E1

NO
DE

2

N
O

D
E3

OWNER3

T2

OWNER1

T3

Twin
Port

Public
Port

Fig. 3: the task authentication mechanism
This figure presents a job composed of five tasks. Tasks T1 and T3 contain objects belonging to
Owner1, while task T2 is associated to Owner3. A method call from an object within T2 to an
object within T1 will use the public port (plain arrow), while a method call from T3 will use the
twin port (dashed arrow).

5. Object management on Mach 3.0

We describe in this section the implementation of the Guide Virtual Object
Memory on top of Mach 3.0. The first sub-section focuses on object sharing using the
memory manager facility; the second sub-section deals with persistent object storage.

5.1. Object sharing

Mach imposes two limitations for the design of the Guide system. First, Mach
provides a limited number of system resources (such as ports) per task. This does not
allow the potential sharing of many objects by two different jobs. Moreover, the unit
of mapping in the address space of a task is a set of pages, which is much greater than
the average size of our objects (a few hundred bytes). For these two reasons, we
introduced the concept of cluster (a cluster is a set of objects) in order to support the
sharing of fine-grained objects. Clusters also allow to group objects into pages in
order to minimize object transfers between VOM and SS. As a cluster may contain
several objects, the sharing of an object implies the sharing of other objects. Thus, all
the objects in a cluster must belong to the same owner.

Microkernels provide the memory manager facility. A memory manager is a

user process which allows other processes to map a chunk of memory, identified by a
port, into their virtual address spaces. From the microkernel point of view, the
memory manager is responsible for handling page faults that may arise on this chunk
of memory. We used this facility to implement clusters. Clusters are managed by a set
of memory managers that we call cluster managers. These managers are distributed
among the network and may cooperate together. A cluster manager implements two
kinds of functions:

• mapping, sharing and protection control;
• paging functions such as page- in/page-out requests from the Mach kernel

(the interface between the kernel and the cluster manager is defined in [Mach
92a]).

Figure 4 depicts the interactions between jobs, the microkernel and the cluster
managers.

T1

T2

Cluster
Manager

Mach 3.0

Clu1
Clu1

clu_Map(Clu1)

data_req(P29)

Fig. 4: Cluster mapping
This figure depicts the sharing of the cluster Clu1 between tasks T1 and T2. In order to map that
cluster, both tasks send a clu_Map request to the cluster manager. After checking the rights of
the tasks, the cluster manager returns a port (P29) which will be used by the tasks when
mapping the cluster. Access to the cluster will cause page faults that will be redirected by the
kernel to the cluster manager using the port P29.

5.2. Object storage

In the computational model defined above, we made the distinction between
two levels of memory: the VOM which provides support for method executions and
which consists of the union of physical memory and the swap disk spaces of each
node, and the SS, which provides long term storage support. The interface between

VOM and SS is defined in terms of load and store operations. The separation between
VOM and SS is useful for the following reasons:

• Modularity (i.e., ability to reuse existing storage servers such as AFS or
Pegasus [Leslie 93]),

• Security (i.e., access control to the persistent storage interface),
• Quality of service (i.e., servers can provide different storage policies such as

reliability, fast access, etc.).

Moreover, movements of clusters between the VOM and the SS are entirely

managed by cluster managers. This allows this transfer to be performed very
efficiently. Transfers are performed on demand (i.e. the whole cluster is not
transferred in VOM at mapping time): a page is only loaded in VOM when the cluster
manager receives a fault on this page. This ensures that the transfer occurs only for
those pages that are actually used by jobs. Furthermore, when the cluster manager has
to store the modified image of a cluster in SS, only dirty pages are copied to SS. This
scheme allows the traffic between VOM and SS to be reduced.

6. Evaluation

In this section, we summarize the lessons learned from our experience in
building the Guide system on top of Mach 3.0. We first discuss the adequacy of
microkernels for the implementation of our system. Then, we present some
performance figures performed on our prototype.

6.1. Adequacy of Mach 3.0

We have shown in the description of the implementation of the Guide system
that the microkernel technology provides a well suited platform for the design of a
distributed object-oriented operating system.

As mentioned above, the Guide model can be viewed as a distributed version of

the Mach model. Consequently the mapping of the Guide abstractions (jobs and
activities) on the Mach abstractions (tasks and threads) was straightforward. In Guide,
an application involves a potentially distributed virtual address space called a job
within which several activities may run. Jobs and activities are naturally represented
by a set of tasks and threads running on the nodes visited by the application.

The benefits of the port concept are twofold:
• The port provides a location transparent address for message passing

between tasks. Therefore, in our implementation, we were able to develop
and debug the entire Guide kernel on a single machine, since message
passing between tasks on a single machine or on different machines have the
same interface. The step between a centralized prototype and the fully
distributed version was quite small compared to the former experiment
achieved on top of Unix.

• Mach ports are protected in the sense that a port cannot be used unless it has
been explicitly given by a task that has the required rights on this port. This
allows the implementation of the isolation requirements for jobs and users.
This also allows the authentication of these user-level tasks when they
cooperate with the Guide kernel.

The ability to design our own memory manager was one of the key benefits

from using the microkernel approach:

• It allows a simple implementation of object sharing between different nodes,
which was not straightforward on Unix.

• It allows the implementation of flexible consistency policies according to ap-
plication requirements.

• It allows the efficient management of fine-grained objects. The use of
memory managers allows a clear separation between the object as unit of
addressing, the cluster as unit of mapping, and the page as unit for I/O
transfers. This allows an optimization of the multiple facets of memory
management.

• Cluster managers enforce the protection model by controlling user rights on
objects into a protected server. In addition, clusters are not made visible to
applications. This also improves the protection scheme of the system.

However the implementation of Guide suffered from some missing features

which are listed below:
• The ability to create a task on a remote node would greatly simplify the

overall architecture and especially the management of the execution
structures.

• Protected ports have a major drawback in a distributed environment: applica-
tions cannot share ports. Should this facility be available, finding a specific
task within a job would have been improved, for example by removing the
need to contact the node daemon.

• Port groups would have been convenient for managing distributed entities
such as jobs and activities. They would also have been useful for providing
fault tolerance facilities.

• Implementation of synchronisation tools such as semaphore objects shared
between task located on the same or different nodes is not an easy work. The
designer should either provide a semaphore server or ensure that all threads
sharing a semaphore object know each other’s ports.

• As proposed in [McNamee 90], it would be interesting to provide the ability
to manage page replacement in physical memory at the level of a cluster
manager, since a cluster manager does have some knowledge about cluster
usage that the kernel cannot manage. For example in the current
implementation, cluster managers collect and store information about page
access or cluster sharing which could allow improved paging.

• It is not possible currently to develop servers on Mach independently of
OSF/1 (for example to get hight level I/O functionalities).

6.2. Performance

The implementation of Guide-2 started at the end of 1991, using first Mach-3.0
and then Mach 3.0/NORMA both with OSF-1 /MK-13 on Bull-Zenith P.C. i486 (33
MHz) connected to a 10 Mb Ethernet. Mach-3.0/NORMA is a version of Mach-3.0
that allows to consider a set of workstations connected by a LAN as a multiprocessor.
NORMA integrates the network communication inside the microkernel, with a
substantial gain of performance (a factor of about 50). Table 1 gives some
preliminary figures. These figures measure the elapsed time of the basic functions
provided by the cluster manager: cluster creation, cluster mapping, handling a read or
write page fault and cluster unmapping. In this experiment clusters in secondary
storage were simply implemented by Unix files. A more elaborate version of the
storage server is under way.

Clusters Operations Time (in ms)
clu_Create1 130,0
clu_Map 10,0
page_read2 6,8
page_write 6,8
clu_Unmap3 124,0

Creating a cluster is a cost intensive operation since it requires to create two

Unix files: one for storing the cluster descriptor and one for the actual cluster. In
addition, this operation involves an access to a specific file containing the information
used to allocate a global unique name for the cluster. The cost of this operation will
be significantly reduced when using the final version of the storage server.

Mapping a cluster requires to read the descriptor of the cluster in order to pick
up its size and its owner. In the upcoming version of the storage server cluster
descriptors will be cached in main memory to reduce the overhead of accessing the
cluster descriptor.

The figures related to page faults (page_read and page_write) take into account
the cache management associated to the Unix file system.

Cluster unmapping implies to store all modified pages in SS. In our scenario all
pages were modified; this explains the relatively high value for this figure. Real appli-
cations are not expected to update all pages at each execution; if it were the case, the
cluster manager would obviously become a bottleneck for the whole system.

To conclude this section, we are convinced that these results are very promising

regarding the level of functionality provided by the cluster machine (i.e.;, object shar-
ing, persistence and protection) and the benefits, in terms of security and modularity,
offered by our architecture. The performance is expected to be slightly improved
when the implementation of a full storage server will replace the current
implementation based on Unix files.

7. Conclusion

We have shown in this paper how we used Mach 3.0 features in the
implementation of the Guide system. The Guide system provides an execution
environment for an object-oriented programming language. The main features of the
system are: persistent shared objects, supported by a two-level distributed storage,
transparent distribution of objects, execution model based on concurrent, distributed
jobs and activities, and support for protection.

The objective of this paper was to assess our three year experience in using
Mach and to present the lessons learned from this work concerning the adequacy of
microkernels for building distributed systems. Systems like Mach and Chorus are
organized as a set of servers which are managed by a minimal microkernel. The
flexibility provided by this architecture greatly helps the design of distributed
systems. Furthermore modularity allows different parts of the system to be designed
and tested separately on the one hand, and various resource management policies to
be experimented on the other hand.

1 Clusters are 10 pages long (40960 bytes).
2 Pages are transfered from SS to VOM (in read or write case).
3 Pages are stored from execution memory to persistent store.

The Guide prototype is currently running on a network of i486-based machines
using Mach 3.0 and the OSF/1 MK server. The implementation is nearly complete.
Several applications such as a distributed co-operative spreadsheet are already
running, that allow debugging and tuning of the system. These experiments have
shown that the standard version of Mach 3.0 performs poorly over the network.
Therefore, in co-operation with OSF-RI, we are currently experimenting the NORMA
version of Mach 3.0 to reduce the cost of remote invocations. Preliminary
experiments with this advanced version are very encouraging.

Acknowledgments. We would like to thank Professor Jacques Mossière for his help in

reviewing this paper. The Guide project is supported by the Commission of European Communities
through the ESPRIT project COMANDOS (Construction and Management of Distributed Open
Systems), the Universities of Grenoble (Institut National Polytechnique de Grenoble – Université
Joseph Fourier) and Centre National de la Recherche Scientifique.

The Guide implementation on top of Mach 3.0 was carried out in collaboration with the OSF-
Research Institute (Grenoble).

Bibliography

[Acetta 86]
 M. J. Acetta, R. Baron, W. Bolowsky, D. Golub, R. Rashid, A. Tevanian, M.

Young, Mach : a new kernel foundation for Unix Development, Proc. of the
USENIX 1986 Summer Conference, Jul. 1986, pp. 93-112

[Balter 91]
 R. Balter, J. Bernadat, D. Decouchant, A. Duda, A. Freyssinet, S. Krakowiak,

M. Meysembourg, P. Le Dot, H. Nguyen Van, E. Paire, M. Riveill, C. Roisin,
X. Rousset de Pina, R. Scioville, G. Vandôme, Architecture and
implementation of Guide, an object-oriented distributed system, Computing
Systems, vol. 4, n° 1, 1991, pp. 31-68

[Black 86]
 A.P. Black, N. Hutchinson, E. Jul, H. Levy, Object structure in the Emerald

system, Proc. First ACM Conf. on Object-Oriented Systems, Languages, and
Applications (OOPSLA), Portland, Sept. 1986

[Boyer 91]
 F. Boyer, J. Cayuela, P. Y. Chevalier, A. Freyssinet and D. Hagimont, Support-

ing an object-oriented distributed system: experience with Unix, Mach and
Chorus, Proc. Symposium on Experience with Distributed and Multiprocessor
Systems, Atlanta, Mar. 91, pp. 283-299

[Dasgupta 90]
 P. Dasgupta, R.C. Chen, S. Menon, M.P. Pearson, R. Ananthanarayanan, U.

Ramachandran, M. Ahmad, R.J. LeBlanc, W.F. Appelbe, J.M. Bernabeu-
Auban, P.W. Hutto, M.Y.A. Khalidi, and C.J. Wilkenloh, The Design and
Implementation of the Clouds Distributed Operating System, In Computing
Systems, vol. 3, n° 1, Winter1990, pp. 11-45

[Hagimont 92]
 D. Hagimont, S. Krakowiak and X. Rousset de Pina, Protection in an Object-

Oriented Distributed System, Proc. of the 4th Int. Workshop on Object
Orientation in Operating System, Paris, Sep. 1992

[Krakowiak 90]
 S. Krakowiak, M. Meysembourg, H. Nguyen Van, M. Riveill, C. Roisin, and

X. Rousset de Pina, Design and implementation of an object-oriented strongly
typed language for distributed applications, Journal of Object-Oriented
Programming, vol. 3, 3, pp 11-22

[Leslie 93]
 I. M. Leslie, D. McAuley and S. J. Mullender, Pegasus - Operating System

Support for Distributed Multimedia Systems, ACM Operating Systems
Review, 27(1), Jan. 1993, pp. 69-78

[Liskov 87]
 B. Liskov, D. Curtis, P. Johnson, and R. Scheifler, Implementation of Argus,

In Proc. 11th Symp. on Operating System Principles, vol. 5, 21, Nov.1987,
pp. 111-122

[Mach 92a]
 Mach 3 Kernel Interfaces, Open Software Foundation and Carnegie Mellon

University, edited by K. L. Loepere, Jan.1992
[Mach 92b]
 Mach 3 Kernel Principles, Open Software Foundation and Carnegie Mellon

University, edited by K. L. Loepere, Jan.1992
[McNamee 90]
 D. McNamee and K. Armstrong, Extending the Mach External Pager Interface

to Accomodate User-Level Page Replacement Policies, Proc of the Mach
Usenix Workshop, Burlington, VE, Oct 1990, pp 31-43

[Rozier 88]
 M. Rozier, V. Abrossimov, F. Armand, J. Boule, M. Gien, M. Guillemont, F.

Herrmann, C. Kaiser, P. Leonard, S. Langlois and V. Neuhauser, Chorus Dis-
tributed Operating Systems, Computing Systems, vol. 1, n° 4, 1988, pp. 305-
370

