
 1

J2EE Applications DEployment : A first Experiment

Noël de Palma2, Sébastien Jean2,,Slim Ben Atallah2, Daniel Hagimont1

INRIA Rhône-Alpes – Sardes project
655 avenue de l’Europe , Montbonnot Saint Martin

38334 Saint Ismier Cedex, France
Tel : 33 4 76 61 52 00, Fax : 33 4 76 61 52 52

First.Last@inrialpes.fr

1 Senior researcher, 2 Assistant professor

Abstract

A J2EE application server is composed of multi-tiers: a web frontend, a servlet server, optionally an EJB server
and a database. Clusters allow the replication of each tier instance, thus providing an appropriate infrastructure
for high availability and scalability of these servers. Clustered J2EE application servers are built from clusters of
each tier and provide the J2EE applications with a transparent view of a single server. However, such applica-
tions are complex to administrate and often lack deployment and reconfiguration tools.

 This paper presents JADE, a java-based environment for clustered J2EE applications deployment. JADE is the
first attempt of providing a global environment that allows deploying J2EE applications on clusters. Beyond
JADE, we aim to define an infrastructure that allows managing as autonomously as possible a wide range of clus-
tered systems, at different levels (from operating system to applications). This paper presents our first experiments
using the JADE infrastructure.

1. Introduction

J2EE-driven architectures are very appropriate to build efficient web-based e-commerce applications. Although
this multi-tiers model, as is, suffers from a lack of scalability, it nevertheless benefits from clustering techniques that
allow by means of replication and consistency mechanisms to increase application bandwidth and availability.

However, J2EE applications are not really easy and comfortable to manage. Their deployment process (installation
and configuration) is as complex as tricky. No execution monitoring mechanism really exists and dynamic reconfigura-
tion remains a goal to achieve. This lack of manageability makes it very difficult to take fully advantage of clustering
capabilities, i.e. expanding/collapsing replicas sets as needed, and so on and so forth …

This paper presents the first results of an ongoing project that aims to provide system administrator with a man-
agement environment that is as automated as possible. Managing a system means being able to deploy, monitor and
dynamically reconfigure such a system. Our first experiments target the deployment (i.e. installation/configuration) of
a clustered J2EE application. The contribution in this field is JADE, a java-based application deployment environment
that eases administrator’s job. We show how JADE allows deploying a real benchmark application called RUBIS.The
outline of the rest of this paper is as follows. Section 2 recalls clustered J2EE applications architecture and life cycle
and shows the limits of existing deployment and configuration tools. Section 3 presents JADE, a contribution to ease
such application management by providing automatic scripting-based deployment and configuration tools. Finally,
Section 4 concludes and presents future work.

2. Administration of J2EE clusters: state -of-the-art and challenges

This introductory section recalls clustered J2EE applications architecture and life cycle before showing the limits
of associated management tools.

 2

2.1. Clustered J2EE applications and their life cycle

Fig.1 : J2EE applications architecture

J2EE application servers [1], as depicted in Figure 1, are usually composed of four different tiers, either running on
a single machine or on up to four ones:

- A web tier, as a web sever (e.g. Apache [2.]), that manages incoming clients requests and, respectively depend-
ing if those relate to static or dynamic content, serves them or route them to the presentation tier using the appropri-
ate protocol (e.g. AJP13 for Tomcat).

- A presentation tier, as a web container (e.g. Tomcat [3.]), that receives forwarded request from the web tier, in-
teracts with the business logic tier (using the RMI protocol) to get related data and finally dynamically generates a
web document presenting the results to the end-user.

- A business logic tier , as an Enterprise JavaBeans server (e.g. JoNAS [4.]), that embodies application logic com-
ponents (providing them with non-functional properties) which mainly interact with the database storing application
data by sending SQL requests by the way of the JDBC framework.

- A database tier, as a database management system (e.g. MySQL server [5.]), that manages appliction data.

The main motivations of clustering are scalability and fault-tolerance. Scalability is a key issue in case of web ap-
plications that must serve billion requests a day. Fault-tolerance does not necessarily apply to popular sites, even if it
is also required in this case, but to applications where information delivery is critical (as commercial web sites for ex-
ample). Both scalability and fault -tolerance are offered through replication (and consistency management for the last).
In the case of J2EE applications, database replication provides application with service availability when machine
failures occur, as well as efficiency by load balancing incoming requests between replicas. The global architecture of
clustered J2EE applications is depicted in Figure 2 and detailed below in the case of an {Apache, Tomcat, JoNAS,
MySQL} cluster. Apache clustering is managed through HTTP load balancing mechanisms that can involve hard-
ware and/or software helpers. We cite below some well-known general-purpose techniques [6.] that apply to any kind
of web servers:

• Level-4 switching, where a high-cost dedicated router can distribute up to 700000 simultaneous TCP con-
nections over the different servers

• RR-DNS (Round-Robin DNS), where a DNS server periodically changes the IP address associated to the
web site hostname

• Microsoft’s Network Load Balancing or Linux Virtual Server that use modified TCP/IP stacks allowing a set
of hosts to share a same IP addresses and cooperatively serve requests

• TCP handoffs , where a front-end server establishes TCP connexions and lets a chosen host directly handle
the related communication.

Web tier

Database tier

HTTP

RMI

SQL
AJP13

mod_jk
plugin

end-user Presentation tier

Business logic tier

Tomcat

JDBC

 3

Fig. 2 : clustered J2EE applications architecture.

Tomcat clustering is made by using the load balancing feature of Apache’s mod_jk plugin. Each mo d_jk can be

configured in order to balance requests on whole or of a subset of Tomcat instances, according to a weighted round-
robin policy.

No common mechanism exists to manage business logic tiers replicas, but ad’hoc techniques have been defined.
For example, JoNAS clustering can be achieved by using a dedicated “cluster” stub instead of the standard RMI stub
in Tomcat in order to interact with EJB. This stub can be seen as a collection stub that manages load balancing, as-
suming that whatever the JoNAS instance where a bean has been created, its reference is bound in all JNDI registries.

Database clustering solutions often remain commercial, like Oracle RAC (Real Application Cluster) or DB2 cluster
and require using a set of homogeneous full replicas. We can however cite C-JDBC [7.], an open source JDBC clus-
tering middleware that allows using heterogeneous partial replicas providing with consistency, caching and load bal-
ancing.

J2EE applications life cycle consists in three main steps that are detailed below: deployment, monitoring and recon-
figuration.

Deployment At the deployment step, tiers must firstly be installed on hosts and be configured to be correctly
bound to each other. Then, application logic and data can be initialized. Application tiers are often delivered through
installable packages (e.g. rpms) and the configuration is statically expressed in configuration files that statically map
components to resources.

Monitoring Once the application has been deployed on the J2EE cluster, one needs to know both the system and

the application states to be aware of problems that may arise. Most common issues are due either to hardware faults
such as a node or network link failure, or inappropriate resource usage when a node or a tier of the application server
becomes a bottleneck.

Reconfiguration Once a decision has been taken (e.g., extension of a J2EE tier on new nodes to handle increased

load), one must be able to perform appropriate reconfiguration, avoiding as most as possible to stop the associated
component.

2.2. Deployment, monitoring and re configuration challenges
Currently, no integrated deployment environment exists for clustered J2EE applications. Each tier must be in-

stalled manually and independently. Identically, the whole assembly, including clustering middleware, must be con-
figured manually mainly through static configuration files (and there also no configuration consistency verification
mechanism). Consequently, the deployment and configuration process is a complex task to perform.

J2EE cluster monitoring is also a weakly offered feature. It is obviously possible to see hosts load or to use SNMP
to track failures , but this is not enough to get pertinent information about application components. There is no way
to monitor an apache web server, and even if JoNAS offer JMX interfaces to see what applications are running, clus-

Web tiers Database tiers

HTTP

Presentation tiers Business logic tiers

JDBC

mod_jk
+ LB

H
T
T
P

 L
oa

d
ba

la
nc

er

JNDI
replica

JNDI
replica

JNDI
replica

AJP13

end-user

RMI

JD
B

C
 clustering m

iddlew
are

cluster
stub

Web tiers Database tiers

HTTP

Presentation tiers Business logic tiers

JDBC

mod_jk
+ LB

H
T
T
P

 L
oa

d
ba

la
nc

er

JNDI
replica

JNDI
replica

JNDI
replica

AJP13

end-user

RMI

JD
B

C
 clustering m

iddlew
are

cluster
stub

 4

ter administrator can not gather load evaluations at application level (but only the amount of memory used by the
JVM). Finally, d atabase servers usually do not offer monitoring features, except in few commercial products.

In terms of reconfiguration, no dynamic mechanism is really offered. Only Apache server enables to dynamically
take into account configuration file changes, others tiers need to be stopped and restarted in order to apply low-level
modifications.

In this context, in order to alleviate the burden of application administrator, to take advantage of clustering and
thus to be able to optimize performance and resource consumption, there is a crucial need for a set of tools:

- an automated deployment and configuration tool, that allows to easily and user-friendly deploy and config-
ure a entire J2EE application,

- an efficient application monitoring service that automatically gathers, filters, and notifies events that are per-
tinent to the administrator,

- a framework for dynamic reconfiguration.

In the following, we present a first step towards an automated J2EE application management environment, con-
sisting in an automated deployment environment called JADE.

3. JADE: J2EE Applications DEployment infrastructure.

In this section, we present JADE, a deployment environment for clustered J2EE applications. We firstly give an
overview of the architecture and follow with the example of a benchmark application deployment called RUBIS.

3.1. Architecture overview
JADE is a component-based infrastructure which allows the deployment of J2EE applications on cluster environ-

ment. As depicted in Figure 3, JADE is mainly composed of three levels defined as follows:

Fig. 3 : The JADE architecture overview.

 5

Konsole level In order to deploy software components, JADE provides a configuration shell language. The
language introduces a set of deployment commands described as follows:

• “start daemon”: starts a JADE daemon on a cluster node
• “create”: creates a new component manager
• “set”: sets a component property
• “install”: installs component directories
• “installApp”: installs application code and data
• “start”: starts a component
• ”stop”: stops a component.

The use of configuration commands is illustrated in the RUBIS deployment use case in Fig.4. The Shell com-
mands are interpreted by the command invoker which build deployment requests and submit them to the
deployer engine. JADE provides a GUI konsole which allows deploying of software comp onents of cluster
nodes. As shown in Figure 3, each started component is managed through its own GUI konsole. The GUI
konsole also allows to manage existent configuration shells. A standard deployment script can perform the
following actions: install the tiers, configure a tier instance, load the application on tiers, configure the appli-
cation, start tiers. An example of deployment script is given in section 3.2. A standard undeployment script
should stop the application and tiers and should uninstall all the artefacts previously installed.

Deployment level: it describes the component repository, the deployment engine and the component manager

- The repository provides access to several software releases (Apache, Tomcat, …) and associated com-
ponent managers. It provides a set of interfaces for instantiating deployment engine and component
manager.

- The JADE deployment engine is a component-based infrastructure. It provides the interface required to
deploy the application on the required nodes. It is composed by component factory and by compo-
nents deployer on each node involved. When a deployment shell runs a script, it begins with the instal-
lation of component factories on required nodes and then interacts with factories to create component
deployer. The shell can then execute the script invoking component deployer. Component factory ex-
poses an interface to remotely create and destroy component managers. Components deployers are
wrappers that encapsulate legacy code and expose interface that allows installing tiers from the reposi-
tory onto the local node, configuring the local installation, loading the application from the repository
on tiers, configuring the application and starting/stooping tiers and the application. The JADE com-
mand invoker submits deployment and configuration requests to the deployment engine. Even if cur-
rently the requests are implemented as synchronous RMI calls to the deployment engine interface,
other connectors (such as MOM) should be easily plugged in the future.

Cluster level the cluster level illustrates the components deployed and started on cluster nodes. At this stage,
deployed components are able to be managed

3.2. RUBiS deployment Scenario
RUBiS [8] provides a real-world example of the needs for improved deployment activities support . This example is

used to design a first basic deployment infrastructure. RUBiS is an auction site prototype modelled after eBay.com
that is used to evaluate application design patterns and application servers performance and scalability. RuBis offers
different application logic implementations. It may take various forms, including scripting languages such as PHP that
execute as a module in a Web server such as Apache, Microsoft Active Server Pages that are integrated with Micro-
soft's IIS server, Java servlets that execute in a separate Java virtual machine, and full application servers such as an
Enterprise Java Beans (EJB) server [22]. This study focuses on the Java servlets implementation. Since we take the
use case of RuBis in a cluster environment, we depict a load balancing scenario. Below is presented a configuration

 6

implying two Tomcat servers and two MySQL servers. In this configuration, the Apache server is deployed on a
node called sci40, the tomcat servers are on nodes called sci41 and sci42, and finally the two MySQL servers are on
nodes called sci43 and sci44.

// start the daemon (ie : the factory)
start daemon sci40
start daemon sci41
start daemon sci44
start daemon sci45

// create the managed component: type name host
create apache apache1 sci40
create tomcat tomcat1 sci41
create tomcat tomcat2 sci42
create mysql mysql1 sci43
create mysql mysql2 sci44

// Configure the apache part
set apache1 DIR_INSTALL /users/hagimont/apache_install
set apache1 DIR_LOCAL /tmp/hagimont_apache_local
set apache1 USER hagimont
set apache1 GROUP sardes
set apache1 SERVER_ADMIN hagimont@imag.fr
set apache1 PORT 8081
set apache1 HOST_NAME sci40
set apache1 WORKER tomcat1 8009 sci41 100 //bind to tomcat1
set apache1 WORKER tomcat2 8009 sci42 100 //bind to tomcat2
set apache1 JKMOUNT servlet

// Configure the two tomcat
set tomcat1 JAVA_HOME /cluster/java/j2sdk1.4.2_01
set tomcat1 DIR_INSTALL /users/hagimont/tomcat_install
set tomcat1 DIR_LOCAL /tmp/hagimont_tomcat_local
set tomcat1 WORKER tomcat1 8009 sci41 100 // provides worker port
set tomcat1 AJP13_PORT 8009
set tomcat2 DataSource mysql2

set tomcat2 JAVA_HOME /cluster/java/j2sdk1.4.2_01
set tomcat2 DIR_INSTALL /users/hagimont/tomcat_install
set tomcat2 DIR_LOCAL /tmp/hagimont_tomcat_local
set tomcat2 WORKER tomcat2 8009 sci42 100 // provides worker port
set tomcat2 AJP13_PORT 8009
set tomcat2 DataSource mysql2

// Configure the two mysql
set mysql1 DIR_INSTALL /users/hagimont/mysql_install
set mysql1 DIR_LOCAL /tmp/hagimont_mysql_local
set mysql1 USER root
set mysql1 DIR_INSTALL_DATABASE /tmp/hagimont_database

set mysql2 DIR_INSTALL /users/hagimont/mysql_install
set mysql2 DIR_LOCAL /tmp/hagimont_mysql_local
set mysql2 USER root
set mysql2 DIR_INSTALL_DATABASE /tmp/hagimont_database

 7

// Install the component
install tomcat1 {conf, doc, logs,webapps}
install tomcat2 {conf, doc, logs,webapps}
install apache1 {icons,bin,htdocs,cgi-bin,conf, logs}
install mysql1 {}
install mysql2 {}

// Load the application part in the middleware
installApp mysql1 /tmp/hagimont_mysql_local ""
installApp mysql2 /tmp/hagimont_mysql_local ""
installApp tomcat1 /users/hagimont/appli/tomcat rubis
installApp tomcat2 /users/hagimont/appli/tomcat rubis
installApp apache1 /users/hagimont/appli/apache Servlet_HTML

// Start all the component
start mysql1
start mysql2
start tomcat1
start tomcat2
start apache1

Fig. 4. Rubis deployment shell

4. Conclusion and future work

As the popularity of dynamic -content Web sites increases rapidly, there is a need for maintainable, reliable and
above all scalable platforms to host these sites. Clustered J2EE servers is a common solution used to provided reli-
ability and performances. J2EE clusters may consist of several thousands of nodes, they are large and complex dis-
tributed system and they are challenging to administer and to deploy. Hence is a crucial need for tools that ease the
administration and the deployment of these distributed systems. Our ultimate goal is to provide a reactive manage-
ment system.

We propose the JADE tool which is a framework to ease J2EE applications deployment. JADE provides automatic

scripting-based deployment and configuration tools in clustered J2EE applications. We experienced a simple configu-
ration scenario based on a servlet version of an auction site (RuBis). This experiment provides us the necessary
feedback and a basic component to develop a reactive management system. It shows the feasibility of the approach.
JADE is a first tool that provides with deployment facility, but it has to be completed to provide a full administration
process with monitoring and reconfiguration.We are currently working on several open issues for the implementation
of our architecture system model and instrumentation for resource deployment, scalability and coordination in the
presence of failures in the transport subsystem, automating the analysis and decision processes for our J2EE use
cases. We plan to experiment JADE with other J2EE scenarii including EJB (The EJB version of RuBis). Our deploy-
ment service is a basic block for administration system. It will be integrated in the future system management service.

5. References

[1] Subrahmanyam Allamaraju et al. – Professional Java Server Programming J2EE Edition - Wrox Press, ISBN 1-
861004-65-6, 2000.

[2.] http://www.apache.org
[3.] http://jakarta.apache.org/tomcat/index.html
[4.] http://jonas.objectweb.org/
[5.] http://www.mysql.com/
[6.] http://www.onjava.com/pub/a/onjava/2001/09/26/load.html

 8

[7.] Emmanuel Cecchet and Julie Marguerite. C-JDBC: Scalability and High Availability of the Database Tier in
J2EE environments. In the 4th ACM/IFIP/USENIX International Middleware Conference (Middleware),
Poster session, Rio de Janeiro, Brazil, June 16-20, 2003.

[8.] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie Marguerite and Willy Zwaenepoel. Performance
Comparison of Middleware Architectures for Generating Dynamic Web Content. In Proceedings of the 4th
ACM/IFIP/USENIX International Middleware Conference (Middleware), Rio de J aneiro, Brazil, June 16-
20, 2003

[9.] K. Ogata – Modern Control Engineering, 3rd ed. – Prentice-Hall, 1997.
[10.] Y. Fu et al. – SHARP: An architecture for secure resource peering – Proceedings of SOSP'03.
[11.] Vivien Quéma, Roland Balter, Luc Bellissard, David Féliot, André Freyssinet and Serge Lacourte. Asynchro-

nous, Hierarchical and Scalable Deployment of Component-Based Applications. In Proceedings of the 2nd
International Working Conference on Component Deplyment (CD'2004), Edinburgh, Scotland, may 2004.

