
PLASMA: A Component-based Framework for Building

Self-Adaptive Multimedia Applications

Oussama Layaida and Daniel Hagimont

SARDES Project, INRIA Rhône-Alpes ZIRST-655, Avenue de l’Europe- 38334 Montbonnot

Saint-Ismier Cedex; France

ABSTRACT

With the proliferation of networked devices, today’s multimedia applications operate, as never before, in het-
erogeneous and dynamic environments. An attractive way to deal with this situation is to make applications
self-adaptive (or self-reconfigurable); that is, make them able to observe them-selves and their environment,
to detect significant changes and to reconfigure their own behavior in QoS-specific ways. This issue has made
the subject of numerous works, especially in the context of multimedia applications. However, several key re-
quirements of adaptivity have not been well addressed such as: the generality to a wide range of applications,
the customizability to each application context and the flexibility of reconfiguration mechanisms. We address
these aspects in a component-based framework for building self-reconfigurable multimedia applications, named
PLASMA. This paper describes the architecture of PLASMA and shows its use through an application use case.
Experimental evaluations show that reconfigurations have a low cost, while significantly improving the QoS.

1. INTRODUCTION

Nowadays, multimedia technologies play a central role for many social, entertainment and scientific applications.
Many standards have been developed to provide advanced multimedia functionalities such as composite media
objects, interactive presentations, 3D animations, etc. This evolution has been accompanied by the apparition
of new networked devices with improved multimedia capabilities. This has led, as never before, to heterogeneous
and dynamic environments. Networks vary in nature and performance; also, end user devices have diverse com-
putation capabilities in terms of processing power, display, battery lifetime, etc. On the other hand, end-system
and network resource availability vary unexpectedly during applications run-time. Such resource fluctuations
may violate the requirements of multimedia application and cause a low-level quality of service.

An attractive way of dealing with such changes is to adapt the behavior of applications accordingly. This
is achieved through dynamic reconfiguration, the purpose of which is to evolve the initial configuration of the
application into a second one that matches the new environment conditions. By this way, applications will be
able to optimize their quality of service at any time. The ideal consists in making applications self-adaptive, or
self-reconfigurable. That is, allowing them to observe themselves and their environment, to detect significant
changes and reconfigure their own behavior in QoS-specific ways. This design principle, called reflection,16 offers
significant advantages in developing self-adaptive systems, middleware frameworks and applications.

1.1. Problem formulation

Bringing adaptivity to multimedia applications is not straightforward. There are many issues that have to be
considered in order to provide an accurate solution. From our point of view, the most important are as follows:

• Generality: Different applications may have different performance criteria and consequently, they require
different reconfiguration strategies. For example, a real-time videoconferencing application is more sensitive
to network fluctuations and requires an adapted congestion control algorithm. Such application-specific
constraints require the approach to reconfiguration be general enough to be used for a broad range of
applications.

Further author information: E-mail: First.Last@inrialpes.fr, Telephone: +33 4 76 61 52 79, Fax: +33 4 76 61 52 52



• Context-awareness: Reconfiguration requirements may also vary within the same application depending
on its execution context, such as the hardware capacities of the terminal. For instance, a VoD client
running on PDA prefers that server reduces the video resolution when congestion occurs; whereas in the
case of a desktop PC it would be more efficient to change the encoding format. Such variations of strategies
make difficult, nay impossible, for application designers to predict all possible situations at development-
time. Therefore, it becomes necessary that reconfiguration policies be easily tailored to the context of each
application.

• Adaptivity: Some changes in the underlying environment may affect reconfiguration policies. This re-
quires reconfiguration policies be themselves reconfigurable in order to ensure their efficiency during the
application life-time.

1.2. This Paper

The primary objective of our work is to deal with the complexity of multimedia applications. Toward this goal,
we have designed PLASMA ∗, a middleware framework that eases building self-adaptive multimedia applications.
We present the framework architecture and show how it addresses the above-mentioned requirements.

The rest of this paper is organized in five sections. The next section presents a classification of related work.
Section 3 describes the basic concepts used to design PLASMA. Section 4 details the framework architecture
and its main components. Section 5 describes a use case in a video streaming application. Section 6 gives
implementation details and some numerical results. Finally, section 7 dresses the conclusion and outlines the
future work.

2. RELATED WORK

During the past decade, the development of adaptive systems has been greatly enhanced by middleware and
component-based systems.1 Such component-based systems provide application developers with high-level ab-
stractions that relieve them from dealing with recurrent functionalities, such as remote procedure call, component
migration, asynchronous interactions, etc. Following this principle, work around multimedia applications has led
to the development of several component-based frameworks such as DirectShow (Microsoft)8 JMF (Sun)15 and
PREMO (ISO).9 The common idea consists in implementing multimedia-related functions in separate compo-
nents. Various multimedia services can then be built by selecting and assembling the appropriate components.
Likewise, reconfiguration operations are facilitated through high-level component-related operations such as:
adjusting component’s properties, stopping/starting a subset of components, removing/inserting components
or modifying their assembly. Complex operations can be made-up of combination of those basic operations,
performed in an appropriate order. These advantages have motivated several research works. We reviewed the
state of the art in this area and found mainly five approaches:

• Static, hard-coded reconfiguration policies: A first approach to reconfiguration uses static reconfiguration
policies to deal with specific, pre-determined changes in the environment. The MBONE tools VIC23 (Video
Conferencing Tool) and RAT13 (Robust Audio Tool) are two well-known examples of adaptive applications.
Although such applications are not component-based, they use the RTCP19 feedback mechanism and a loss-
based congestion control algorithm in order to dynamically adapt media streams to the available bandwidth.
The reconfiguration operation consists in tuning key encoding properties (quality factor, frame rate, etc.)
in order to adjust the transmission rate appropriately. Nevertheless, employing static reconfigurations
is too restrictive because they have to be anticipated at development-time. Thus, a modification of a
reconfiguration policy requires additional development efforts.

• Component-based frameworks with reconfiguration capabilities: Some research works have proposed component-
based frameworks with reconfiguration capabilities. The Toolkit for Open Adaptive Streaming Technology
(TOAST)10 explores the use of open implementation and reflection to ease the development of adaptive

∗PLASMA stands for PLAtform for Self-adaptive Multimedia Applications



multimedia applications. TOAST offers two kinds of reconfigurations: (1) minor adaptation refers to mod-
ifications of component properties and (2) major adaptation involves changes of applications structure by
inserting and/or removing components. Although TOAST offers the required features to achieve reconfig-
urations, they are left to application developers who must deal with: resource and application monitoring,
reconfiguration decisions and their implementation.

• Component-embedded reconfiguration policies: In some component-based architectures, reconfiguration fea-
tures are embedded in functional components themselves. In Microsoft DirectShow8 for example, processing
components (called filters) exchange in-stream QoS messages traveling in the opposite direction of the data
flow. Using this mechanism a component may indicate to its predecessors that data is being produced too
rapidly (a flood) or too slowly (a famine). QoS control in DirectShow is limited to adjusting the rate of
data flow through components to runtime performances. However, it can be easily extended to support
a larger scope of QoS control, as proposed in.6 As in the first approach, reconfiguration operations are
hard-coded in components. The major drawback here is that, because components are built at the same
level, reconfigurations occur in the context of each component rather than in the application. Then, al-
though it is possible to change the behavior of components, it is not possible to replace a component, as
the structure of the application is not known by components.

• Separate reconfiguration managers: In contrast to the previous approach, some works have proposed that
all reconfiguration features be integrated in separate managers. Instead of sending QoS messages through
components, they are delivered to a reconfiguration manager, which applies reconfiguration operations.
CANS (Composable Adaptive Network Services)11 for example, follows this approach to design adaptive
media transcoding gateways. A similar work was conducted in25 to provide adaptive media streaming for
mobile devices. The limitation of this approach consists in determining how managers can apply reconfig-
urations with different kinds of component configurations (corresponding to different multimedia services).
Managers must have a perfect knowledge of application structure in order to perform reconfiguration appro-
priately. Given the high number of possible configurations, this approach remains applicable to a specific
class of applications and can not be generalized to a wide range of applications. On the other hand, a
change in component implementation or adding new components requires an update of the manager code.

• Scripting languages for reconfiguration: Recent works have proposed more flexible reconfiguration schemes,
where reconfiguration policies are declared separately from the application using scripting languages as pro-
posed in.22 Reconfiguration specifications are translated at application launch-time, which facilitates their
customization according to application requirements. However, existing works restrict the specification
to reconfiguration policies and make hypothesis on applications structure. Indeed, reconfiguration speci-
fications do not designate which components initiate reconfiguration events and which should be targeted
by reconfiguration actions. The result is that each application needs a specific translator, which has the
knowledge of its structure.

3. DESIGN CONCEPTS

This section presents the main concepts followed for the design PLASMA in order to overcome the shortcomings
of previous works. We briefly present the component model used as its basis. We then discuss our approach to
reconfiguration.

3.1. Using the Fractal Component Model

We base PLASMA on Fractal3†, a software composition framework intended to the deployment, the introspection
and the reconfiguration of complex software systems. Compared to other component models, Fractal has the
following particularities (see Figure 1):

†Fractal is a joint effort of France Telecom R&D and INRIA Rhône-Alpes, and is a project of the ObjectWeb consortium.
A detailed specification is provided at http://fractal.objectweb.org



Composite

Components Shared Component
Primitive

Component

CC BC LC
Control Interfaces

AC

Configuration and

Reconfiguration

Management

C

A

B

D

E

Figure 1. Architecture of enhanced Fractal Components.

• Hierarchical composition: The Fractal model defines primitive and composite components. A primitive
component encapsulates functional code (C and D on Figure 1) while composite components encapsulate
other components that can be either primitive or composite (A, B and E). The model is recursive in the
sense that components can appear at arbitrary levels of composition with a similar structure, hence the
name Fractal.

• Modularity: Fractal components are structured in terms of content and controller. The content part
defines a finite number of components, called sub components, which are under the control of the controller
of the enclosing component. The controller part embodies the control behavior associated with a particular
component. The component model defines four kinds of control interfaces defined as follows:

– Binding Controller (BC): provides operations to bind and unbind interfaces of the component.

– Content Controller (CC): allows listing, adding and removing sub-components in the component
content.

– Life-cycle Controller (LC): allows explicit control on the component execution (e.g. start and stop
operations).

– Attribute Controller (AC): allows reading and writing the component attributes from its outside.

• Component sharing: One characteristic of the Fractal model is the ability to share components between
several composite components (component C). Component sharing is very useful to model resource sharing
between components.

3.2. Approach to reconfiguration

Hierarchical reconfiguration: Our approach to reconfiguration differs from the previous work in the fact
that it employs a hierarchical reconfiguration model. Based on the hierarchical composition provided by Fractal,
reconfigurations can also be considered at different levels of composition. As shown on figure 1, each component
has its own configuration and reconfiguration manager. By exploiting the knowledge of its structure, each
component determines the appropriate way to achieve a given reconfiguration, transparently to higher levels.

Using a Dynamic ADL: The second concept used in PLASMA is the use of a dynamic ADL (Architecture
Description Language) within the middleware. Besides structural and functional information of applications, a
dynamic ADL offers constructs to describe their dynamic behavior with respect to changes in the environment.
The middleware framework offers the required tools to match a specification with a component assembly.

4. THE DESIGN OF PLASMA

This section presents the general architecture of PLASMA. The framework mainly encompasses three kinds
of components: Media Components, Monitoring and Reconfiguration components. The following subsections
describe the role of each of them, and detail their relationships.



RTP

Depackati

zer

Media Composites

RTP

Demux

RTP

Receiver

Media Primitives

HTTP

Receiver

Figure 2. Examples of Media Components: Input-Stream MCs.

4.1. Media Components

Media components represent the computational units used for the composition of the various multimedia services.
The architecture is decoupled into three hierarchal levels, each providing a specific functionality:

1. Media Primitive (MP) components are the lowest-level processing entities. They implement basic multimedia-
related functions such as MPEG decoding, H.261 encoding, UDP transmission, etc. Each media primitive
has a set of stream interfaces used to receive/deliver data from/to other components. A stream interface is
typed by the media stream formats expressed with media-related properties such as MIME type, encoding
format and data-specific properties (resolution, colors, etc.). Thus, each component accepts data in given
media formats and produces data in given media formats.

2. Media Composite (MC) components are composite components that represent higher-level functions, called
Tasks , such as Decoding, Encoding, Network Transmission, etc. Each media composite deals with a group
of MPs offering various implementations of its Task. It creates, as sub-components, a set of MPs in order to
achieve a specific behavior. In the example shown on figure 2, an InputStream composite may be composed
of three Media Components in the case of an RTP input stream: an RTP receiver, a Demultiplexer (Demux)
to separate multiple streams and a Depacketizer to reconstitute media data. On the other hand, an HTTP
input stream requires one primitive component: HTTP-Receiver. The role of media composites is to hide all
features inherent to their sub-components. They are responsible for creating, configuring and reconfiguring
their sub-components when needed. Media composites have one input and one output binding interfaces in
order to be bound with other composites. In contrast to stream interfaces, binding interfaces are collection
interfaces i.e. they can be bound to several binding interfaces at the same time.

3. The Media-Session (MS) component is a composite that encapsulates MCs. The Media-Session represents
an application configuration and exposes all control features that can be made upon it (i.e. VCR-like
operations: start, pause, stop, forward, reward, etc.).

Composite Binding

Primitive Bindings Stream interfacesBinding interfaces

MPEG

Decoder
….. ……

H.261

Encoder

YUV-2-

RGB

Frame

Resizer

Figure 3. Examples of bindings.

4.2. Media Component Interactions

The construction of an application is performed by binding the different components in a flow graph. Inside
each MC, MP components are bound through stream interfaces. Bindings between MCs are performed through
their binding interfaces, which map each binding to the appropriate stream interface of their MPs. The success



CPU

Probe

QoS

Probe

Event

Composer
Sensor

Sensor

SensorActuator

Actuator

Retreiving QoS values

Reconfiguration 

actions

E
v
en

tS
o
u

rc
e

E
ve

n
tS

in
k

Event Interaction with Media-Components

Event

Method call

G
a

th
erin

g
m

o
n

ito
red

m
etrics

Figure 4. Event-based interactions.

of a binding between two primitive components is governed by the media-type compatibility between the bound
interfaces. According to this condition, there may be two kinds of bindings:

• Primitive bindings are used to bind components handling the same media type. This means that media
data is streamed directly from input streams to output streams by using method calls between stream
interfaces.

• Composite bindings are special composite components that mediate between components handling different
media types. Their role is mainly to overcome media type mismatches. These bindings are made-up of a
set of MPs implementing fine-grain media conversions. Figure 3 shows an example of a composite binding
between a Decoder and an Encoder composites. The Decoder composite provides video data in YUV, where
Encoder composite accepts only RGB. Moreover, as the later uses H.261 encoding, it accepts video data in
specific resolutions such as QCIF (176*144). The composite binding creates two primitive sub-components:
a Resizer to transform the video resolution into QCIF and a YUV-2-RGB to convert data format from
YUV to RGB.

4.3. Monitoring and Reconfiguration Components

In addition to media components, our framework defines components to coordinate reconfiguration operations
within applications. These components can be inserted at any level of composition, i.e. as sub-components of
Media Composites or of the Media-Session component. Figure 4 shows a possible assembly of these components.
We distinguish three components added for this purpose: Probes, Sensors and Actuators.

4.3.1. Probes:

Probes define observation points that can be inserted at any level of the composition. They implement the
required operations in order to gather resource or application states. We distinguish two kinds of Probes:

• QoS Probes: Some components are expected to maintain information reflecting QoS values. For example,
an RTP Sender component continuously measures packet loss rate, transmission rate, etc. QoS Probes
interact with those components to collect QoS information.

• Resource Probes: Resource Probes act as separate monitors gathering resource states such as CPU load,
memory consumption, remaining battery life-time, etc. Our framework provides a set of resource Probes
that can be configured in order to return various metrics of each resource.



4.3.2. Sensors:

The role of Sensors is to trigger events likely to activate reconfiguration operations. We distinguish two kinds of
Sensors:

• QoS and Resource Sensors : The first kind of sensors is associated with QoS and Resource Probes. Their
role is to notify relevant changes of observed parameters. The behavior of QoS and Resource Sensors is
generic: it consists in comparing the observed values with agreed thresholds in order to detect changes in
the observed entity. When a change occurs, the Sensor feeds back a corresponding event to the appropriate
components.

• External-event Sensors : The second kind of sensors monitors external events. These Sensors may be used
for different purposes, each requiring a specific implementation. As an example, a Sensor may implement a
conferencing manager listening for new connections and notifying the arrival of new participants. A second
example would be a Sensor associated with the graphical user interface that sends relevant events.

This separation into Probes and Sensors brings significant flexibility to achieve monitoring functionalities.
Indeed, several events can be issued from the same observation. Also, basic events can be composed in order to
trigger composite events before actuating reconfigurations. Such features can be accomplished through Probes
and Sensors, as described on Figure 4.

4.3.3. Actuators:

Reconfiguration actuators are primitive components responsible for the execution of reconfiguration actions.
Actuators react to events by performing required operations on the appropriate components. Each reconfiguration
action on a component is performed through its AttributeController (AC) interface. This interface provides the
following methods for attributes control:

• hasAttribute(string name): queries the component on the presence of a given attribute.

• string getAttribute(string name): retrieves the value of an attribute given its name.

• setAttribute(string name, string value, string unit) sets the value of an attribute.

The behavior of the Actuator is the same for each kind of components. Indeed, all reconfigurations are
executed as changes of component attributes, and achieved through the AC interface. It belongs to the component
implementation of this interface to decide how to execute modifications of its attributes’ values. Depending on
the targeted component and the semantic associated to its attribute; a reconfiguration may lead to one of the
following operations:

1. Functional reconfigurations: The most basic form of reconfiguration consists in changing the functional
attributes of a primitive component belonging to the application. Based on this, reconfigurations may
target key attributes in order to tune the media stream to the desired state. For example, changing the
encoding quality factor or the frame rate of the encoder component.

2. Structural reconfigurations: This operation may occur in the context of the composite, being built-up of
a set of sub-components. It involves: adding/removing a sub-component, changing component bindings,
stopping/starting sub-components.

3. Policies reconfigurations: Reconfiguration actions may also target reconfiguration policies themselves.
Some of them are similar to parameter reconfiguration and requires the modification of key properties
of Probes, Sensors and Actuators. Examples in that sense may consist in changing probing periods, tuning
observation thresholds, modifying operations and operand values of reconfiguration actions, etc. Other
reconfigurations target the execution of these components by invalidating reconfiguration actions, stop-
ping/restarting probes and sensors.



4.3.4. Event-based Interactions:

The communication between Probes, Sensors and Actuators follows a simple event-based model based on three
interfaces: Event, EventSource and EventSink. Event is used to identify any event, defined with specific proper-
ties such as event id, occurrence date, duration, priority, source and specific data. The EventSource interface is
implemented by event emitters (e.g. Probes and Sensors). This interface provides methods that allow: (1) query-
ing supported events, (2) registration for events, and (3) deregistration from events. The EventSink interface is
supplied by event receivers (e.g. Actuator) in order to be notified of event occurrences.

Other components are derived from these interfaces mainly for event-based communication issues. An Event-
Composer for example (see Figure4) is a component implementing both EventSink and EventSource interfaces.
As its name implies, it used for the composition of basic events with boolean constructs. A second example is
an Event-Filter component which receives events, and forwards valid ones according to their priorities.

5. USE CASE: SELF-ADAPTIVE VIDEO STREAMING APPLICATION

This section presents a simple use case which consists in building adaptive video streaming application. It shows
how PLASMA eases to the design of such applications, and in particular, how reconfiguration capabilities are
added to this applications.

<TaskFlow id="Server" location="194.199.25.52">
<Task name="Input-Stream" id="C">

<Attributes signature="CaptureAttributeController">
<Attribute name="src" value="camera" />
<Attribute name="height" value="288" unit="pixels" />
<Attribute name="height" value="352" unit="pixels" />

</Attributes>
</Task>
<Task name="Video-Encoder" id="E">

<Attributes signature="EncoderAttributeController">
<Attribute name="fmt" value="31" />
<Attribute name="quality" value="80" unit="%" />

</Attributes>
<Binding id="b5" client="C" server="this" />

</Task>
<Task name="Output-Stream" id="O">

<Attributes signature="OutputAttributeController">
<Attribute name="src" value="rtp://194.199.25.99:5004" />
<Attribute name="packet-loss" value="0" />
<Attribute name="FEC" value="none" />

</Attributes>
<Binding client="E" server="this" />

</Task>
<Observation id="obs1" type="Resource" source="RTT">

<event id="evt1" operator="falls" value="100" unit="%" />
<event id="evt2" operator="exceeds" value="200" unit="%" />

</Observation>
<Observation id="obs2" type="Qos" source="Server/id(C)@packet-loss">

<event id="evt1" operator="exceeds" value="25" unit="%" />
</Observation>
<Action-set id="set1" predicate="evt1">

<Action operation="increase" target="id(E)@quality" operand="5" unit="%" status="active"/>
</Action-set >
<Action-set id="set2" predicate="evt2">

<Action operation="decrease" target="id(E)@quality" operand="5" unit="%" status="active"/>
</Action-set >
<Action-set id="set3" predicate="evt3">

<Action id="act2" operation="set" target="Server/id(E)@FEC" operand="Reed-Solomon" status="active"/>
<Action id="act3" operation="set" target="Server/id(set3)/id(act2)@status" operand="passive" status="active"/>

</Action-set >
</TaskFlow>

Figure 5. An ADL Description of a Video Streaming Server.

5.1. Application

The video streaming application consists in two parts: a server continuously distributing an RTP H.261 video
content and a client able to display RTP H.261 video streams. To deal with network resource fluctuations, the



server adjusts the video quality according to the RTT (Round Trip Time) between client and sever and packet
loss ratio observed by the client applications (we employ the RTCP feedback mechanisms to raise packet-loss to
the server). The algorithm is quite simple and has three rules: (i) if the RTT ratio falls 100 milli-seconds (ms)
then increase the encoding quality by 5 %, (ii) if it exceeds 200 ms then decrease the encoding quality by 5 %
and (iii) if packet-loss ratio exceeds 25 % then apply a Reed Solomon FEC (Forward Error Correction) algorithm
on the data stream. In the following, we focus on the server part and details how it is built.

5.2. ADL Description

In order to build this server, we use the description on Figure 5. As we can see, a description consists of a set of
Tasks. Each task may have a collection of attributes that precise its functional properties and its relationships
with other Tasks (i.e. bindings). The result of all bindings consists in a task-graph representing the data
processing sequence. The server description consists in three Tasks: an Input-Stream, a Video-Encoder and an
Output-Stream.

Reconfiguration policies are expressed in terms of Observations and Action-sets. Observations can be related
to Task attributes (QoS Observations or to resources (type attribute). They define events reflecting violations
of thresholds associated to observed parameter. Our example defines a QoS observation related to the packet-
loss of the Output-Stream Task (see type attribute). A second observation defines events related to the RTT
measurement. Action-sets define one or more actions manipulating attribute values. For example, the action in
the first action-set consists in decresing the quality factor attribute (target attribute) by 5 %.

5.3. Deployment and Configuration

The translation of the previous description results to the component architecture shown on Figure 6. The
application is represented by a MS component composed of:

• Three MCs are created for each Task in the description.

• Two Probes created for each Observation. Also, a Sensor component is created to trigger each of its events
when required.

• Three Actuators are created for each Action-set; they are responsible for the execution of actions.

Each of these components is configured with its description values, based on which it will determine its
accurate behavior. Each MC, creates one or more MPs according to its functional attributes. The Video-
Encoder for example, creates an H261Encoder as is has a format attribute set to H.261. In a similar manner,
each component use ADL information in order to determine its interactions with other ones, either through
media bindings or event-based interactions.

5.4. Reconfiguration

Once this application launched, it is subject to reconfigurations that may result of the previously mentioned
rules. Our example has three Actuators likely to apply reconfiguration operations. As explained before, such
operations depend on the semantic of the targeted attribute. The first and the second reconfigurations consist
in tuning the quality factor attribute of the Video-Encoder MC. This later requires: (1) retrieving the current
quality value through getAttribute method and (2) setting the new value through setAttribute method. These
calls are delegated to the H261 encoder, which modifies its behavior accordingly. The third reconfiguration
targets the FEC attribute of the Video-Encoder and consists of two operations:

• The first consists in setting the FEC attribute to Reed Solomon. As shown on Figure 6, this involves
the insertion of a new component inside the Video-Encoder (FEC-Encoder with dotted border). This is
achieved by: (1) creating the FEC-Encoder component (2) stopping media components and unbinding the
H.261-Encoder (3) adding the FEC-Encoder and binding components and (4) restarting media components.

• The second action consists in stopping the Actuator to which its belongs, as these operations can no longer
be applied (the FEC encoder has already been added).



QoS

Probe 

(loss rate)

Sensor S1

Sensor S3

Sensor S2

Actuator

A1

Actuator

A1

Actuator

A1

RTT

Probe

AC

Camera

Capture
RTP

Sender

RTP

Packetizer

FEC

Encoder

H.261

Encoder

EVT1

EVT2

EVT3

1

2

3

1 & 2
3

Figure 6. Structure of the video streaming server.

6. IMPLEMENTATION AND PERFORMANCE EVALUATION

The framework has been entirely implemented in C++ under Microsoft Windows 2000 using Microsoft .Net
2003 development platform. Our implementation provides a complete and compliant C++ implementation
of the Fractal model, of which the reference implementation is provided only in Java. Multimedia processing
functionalities have been developed using DirectX Software Development Kit (SDK) version 9.0. The DirectShow
model, a part of DirectX, provides a component library providing basic multimedia functions. Some missing
components have been added to implement communication and transformation functions. Resource monitoring
features have been implemented in the context of LeWYS ‡, a general purpose framework for monitoring in
Linux and Windows platforms. It provides a set of library routines that simplifies the collection of performance
data. Windows monitoring routines are implanted upon the Performance interface of the windows registry, which
makes them powerful and less costly. Several application scenarios have been built, such as: video transcoding
gateways, audio mixing servers, VoD servers, etc. We give below some numerical results obtained in these
experiments.

The first evaluation § concerns the instantiation cost, which is evaluated as the time spent to parse an ADL
description, check its correctness, create all required components and finally launch the application. We have
measured this time by varying the number of components through different application scenarios. The obtained
results have shown that this time vary strongly with the number of primitive components, which was about 5
ms for each component. The reason is that in DirectShow, media processing components are hosted in DLLs
(Dynamic Link Library) which are dynamically loaded for each component creation.

The second evaluation concerns reconfiguration, where we evaluated the time required to replace a component
at run-time. This operation has taken about 15 ms, during which the application was stopped. Our previous
study21 in the context of self-reconfigurable proxies, have shown the benefits of such reconfigurations on the QoS
perceived by users.

‡LeWYS stands for LeWYS is Watching Your System, it is freely available at http://lewys.objectweb.org
§We used a Windows 2000-based PC with a Pentium 4 Processor at 2 Ghz and 256 Mo of memory.



7. CONCLUSION

This paper has presented PLASMA, a component-based framework for building self-adaptive multimedia applica-
tions. To address the shortcomings of existing works, PLASMA employs concepts of hierarchical reconfiguration
and dynamic ADL in order to efficiently bring adaptivity to multimedia applications. The architecture has been
described and illustrated through an application scenario. This example has shown how PLASMA eases the de-
velopment of adaptive multimedia applications, and how reconfigurations are achieved within applications. Our
experimental study has shown that employing a component-based design does not introduce a high overhead.
Various application scenarios have been released, such as: video transcoding gateways, audio mixing servers, etc.

Our future work will include distribution, where distributed applications may cooperate in order to achieve
reconfigurations. This may concern either monitoring features or the execution of reconfiguration operations.
With a distributed monitoring, applications can remotely gather resource and QoS information in order to
have a fine analysis of application and system states. Having distributed reconfiguration operations means that
application may explicitly trigger reconfiguration actions on remote nodes. This allows, for example, the client
to act on the server’s configuration when needed.

Acknowledgements

This work has been partly funded by the European IST Ozone project (IST-2000-30026) and by a Microsoft
Research Innovation Excellence Award.

REFERENCES

1. G. Blair, L. Blair, V. Issarny, P. Tuma, A. Zarras. The Role of Software Architecture in Constraining
Adaptation in Component-based Middleware Platforms. In Proceedings of Middleware 2000, April 2000,
Hudson River Valley (NY), USA.

2. G. Blair and J. Stefani: Open Distributed Processing and Mulitimedia. Addison-Wesley 1998.

3. E. Bruneton, T. Coupaye, and J.B. Stefani. Recursive and Dynamic Software Composition with Sharing.
Seventh International Workshop on Component-Oriented Programming, (WCOP02), Spain, June 10, 2002.

4. A.P. Black, and al. Infopipes: an Abstraction for Multimedia Streaming. In Multimedia Systems. Special
issue on Multimedia Middleware, 2002.

5. G. Coulson, G.S. Blair, M. Clarke, N. Parlavantzas, The Design of a Configurable and Reconfigurable
Middleware Platform. The Journal of Distributed Computing, 2001.

6. L.S. Cline, J. Du, B. Keany, K. Lakshman, C.Maciocco, D.M. Putzolu. DirectShow(tm) RTP Support for
Adaptivity in Networked Multimedia Applications. IEEE International Conference on Multimedia Comput-
ing and Systems June 28 - July 01, 1998 Austin, Texas.

7. H. Djenidi, A. Ramdane-Cherif, C. Tadj and N. Levy. Dynamic Based Agent Reconfiguration of Multi-
media Multimodal Architecture. In MSE 2002, Fourth International Symposium on Multimedia Software
Engineering. Newport Beach, California, USA, 11-13, December, 2002.

8. Microsoft: DirectShow Architecture. http://msdn.microsoft.com/directx 2002.

9. D. Duke and I. Herman. A Standard for Mulimtedia Middleware. In: ACM International Conference on
Multimedia. (1998)

10. T. Fitzpatrick and J. Gallop and G. Blair and C. Cooper and G. Coulson and D. Duce and I. Johnson,
Design and Application of TOAST: An Adaptive Distributed Multimedia Middleware. In: International
Workshop on Interactive Distributed Multimedia Systems, 2001.

11. X. Fu and al. CANS: Composable, adaptive network services infrastructure, USITS 2001.

12. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley. 416 pp.

13. V. Hardman and al. Reliable Audio for Use over the Internet, INET’95.

14. M. Lohse, M. Repplinger and P. Slusallek, An Open Middleware Architecture for Network-Integrated
Multimedia in Protocols and Systems for Interactive Distributed Multimedia Systems, Proceedings of
IDMS/PROMS’2002, Portugal, November 26th-29th, 2002.



15. Sun: Java Media Framework API Guide. http://java.sun.com/products/javamedia/ jmf/ 2002.

16. B.C. Smith, ”Reflection and Semantics in a Procedural Programming Language”, PhD Thesis, MIT, January
1982.

17. H. Schulzrinne and al. RFC-3550 RTP: A Transport Protocol for Real-Time Applications, 2003.

18. L.A. Rowe, Streaming Media Middleware is more than Streaming Media International Workshop on Multi-
media Middleware, October 2001.

19. H. Schulzrinne and al. RTP: A Transport Protocol for Real-Time Applications. RFC 1889.

20. H. Schulzrinne. RTP Profile for Audio and Video Conferences with Minimal Control. RFC 1890.

21. O. Layaida, S. Ben Atallah, D. Hagimont. Adaptive Media Streaming Using Self-reconfigurable Proxies. In
Proceedings of the 7th IEEE International Conference on High Speed Networks and Multimedia Communi-
cations (HSNMC’04), Toulouse, France, June 30-July 02, 2004.

22. B. Li and K. Nahrstedt, A Control-based Middleware Framework for Quality of Service Adaptations, IEEE
JSAC, 17(9), 1999.

23. S. McCanne and V. Jacobson. VIC: A flexible framework for packet video. Proc. of ACM Multimedia’95,
November 1995.

24. S. McCanne and al. Toward a common infrastructure for multimedianetworking middleware. In Proc. 7th
Intl. Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV ’97), St. Louis, Missouri, May 1997.

25. Z. Morley Mao and al. Network Support for Mobile Multimedia using a Self-adaptive Distributed Proxy,
NOSSDAV-2001.

26. D.G.Waddington and G.Coulson, A Distributed Multimedia Component Architecture, In Proceedings of
the 1st International Workshop on Enterprise Distributed Object Computing, Australia, October 1997.


