Daniel Hagimont (INPT)

Thanks to Noél De Palma, Fabienne Boyer and
Arnaud Legrand (UJF)

Memory 1s a ressource required by all processes

Every program needs to be loaded in memory to be
running

Problems

Address translation
Symbol — Logical address — physical address

Memory allocation and exhaustion
Memory sharing

Memory protection

Sourch compiler /" Relocatable \ _loader ‘ﬁbsolute
file T ijecy [\Objet

symbol logical address physical address
data .
Machine
Logical address (e.g. offet in code) result l
Physical address: decided at load-time

compiler 7~ Relocatable -
Source " - Library
Object
. compiler /~ Relocatable Lmkemocatable
r : f
QIS Object logical address Object
Physical Address | l
compiler Object oader
Source >

relogeable
logical address

Absolute
Object

Translation between logical and physical adresses

Determine where process will reside in memory
Translate all references within program

Established once for all
Monoprogramming

One program in memory

Easy (could even be done before load-time)

Multiprogramming

N programs in memory
Compiler and linker do not know the implantation of processes in memory

Need to track op-codes that must be updated at load-time

Simple program binary

structure

O ?
Text Text

> Data > Data

C il load |I=—7———7—===—=—~-
ompile Symbol oa : Symbol :
table | Table !
Relocation

table

for dynamic libraries

Compile
prg1

—

Compile
prg2

Textl

Datal

STI

RTI1

Text2

Data2

ST2

RT?2

JaMul|

Textl

Text2

Datal

Data2

STI

ST2

RTI1

RT?2

loader

v

Text

Remaining problems

How to enforce protection ?
How to move program once in memory ?
What if no contiguous free region fits program size ?

Can we separate linking from memory management
problems ?

Separate linking problem from memory
management

Give each program its own virtual address space

Linker works on virtual addresses

Virtual address translation done at runtime

Relocate each load/store to its physical address

Require specific hardware (MMU)

P2

1 P
PO
0 0
AdSEes:ses
translation
2m-1
21
Virtual memory Physical memory

Ideally we want to enable n > m and non contiguous allocation

Programs can be relocated while running
Ease swap in/swap out
Enforce protection

Prevent one app from messing with another's
memory

Programs can see more memory than exists

Most of a process's memory will be 1dle

Write 1dle part to disk until needed (swap)

Contiguous allocation of variable size
Two special privileged registers: base and bound
On each load/store:

Check 0 <= virtual address < bound, else trap to kernel

Physical address = virtual address (plus) base

-
bound base ®
register register S
virtual yes B Q
address >® >® e S

ino

Trap to kernel

Moving a process in memory

Change base register
Context switch

OS must re-load base and bound register
Advantages

Cheap 1n terms of hardware: only two registers

Cheap in terms of cycles: do add and compare in parallel
Disadvantages
Still contiguous allocation

Growing a process 1s expensive or impossible

Hard to share code or data

Non contiguous allocation

Split a program 1n different non contiguous
segments of variable size

Let processes have many base/bound registers

Address space built from many segments

Can share/protect memory at segment granularity

Must specify segment as part of virtual address

0x1000

Ox3000

0x5000

Oxe000

Real

MemaLy

0x2000

OxBOOO

0x6000

Each process has a segment table

Each virtual address indicates a segment and offset:

Top bits of addr select segment, low bits select offset

Virtual addr mem

3 0x1000]
Seg#H I —|123

Seg table
Prot] bose

Segmentation example

= 4-bit segment number (1st digit), 12 bit offset (last 3)
= Where 1s 0x02407? 0x11087? 0x265c¢? 0x30027? 0x1600?

Sed base bounads

T

LL)

Qud (00 Jxeff 14
0x0000 Odmd4ff 11

logical

0x4000

0x3000

physical

0x2000

Ox0000

e

Segmentation tradeoffs

= Advantages

= Multiple segments per process

= Allows sharing
= Disadvantages

= N byte segment needs N contiguous bytes of
physical memory

= Fragmentation

Remember fragmentation
problem

= Fragmentation => 1nability to use free memory

= Overtime:

= Variable-size pieces = many small holes (external
fragmentation)

Extarnal

qJCC
! :I'.l."].'ll"lf'.L:.l.:.'.".'!f'.

Fintos

emacs

} Unused

i*intarnal
tragmentation™)

Virtual memory 1s divided into small pages

Pages are fixed size
A page 1s contiguous
Map virtual pages to physical block

Non contiguous allocation of blocks

Each process has a separate mapping but can share the
same physical block

MMU
OS gains control on certain operations

Non allocated pages trap to OS on access
Read only pages trap to OS on write
OS can change the mapping

Paging

>
Disk
[]

physical
mMemory

/

gcc

elacs

= Page table

= Global or per process

logical
address

physical
address

v

d

page table

fOO00 . .. 0000

f1111 ... 1111

physical
memory

Require extra memory references on each load/store

Cache recently used translations

Locality principle
High probability that the next required address 1s close

Translation Lookaside Buffer (TLB)

Fast (small) associative memory which can perform a
parallel search

Typical TLB

Hit time : 1 clock cycle
Miss rate 1%

TLB management : hardware or software

logical

address
_>| P | d |

page frame
number number

TLB hit

physical
address

.

TLB

p {
TLB miss

.

physical
memory

page table

What to do when switch address space ?

Flush the TLB

Tag each entry with the process's 1d

Update TLB on page fault (add/remove TLB entries)

Problem : page table size

= Flat page tables are huge

= Example
= 4GB of virtual memory (32 bits address)
= 4KB pages
= 20bits page number, 12 bits offset
= 1MB page table size :<

Reduce the size of page tables in memory

Structured page tables in 2 or more levels

All the page tables are not present in memory all
the time

Some page tables are stored on disk and fetched 1t
necessary

Based on a on-demand paging mechanism

outer-page
table

page of
page table

page table

Example: two level pages

Linear Address

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

31 22 21 12 11 0
Directory Table Offset
4
/112 4 KByte Page
10 “10 Page Table —» Physical Address
Page Directory
—» Page-Table Entry ,’;Dk
—| Directory Entry o
o
A 32* 1024 PDE x 1024 PTE = 220 Pages

Virtual memory > physical memory

Some pages are not present in memory (X)

Stored on disk
Physical
Virtual memory
memory 0-4K
0-4K 2 L 4-8K
4-8K
X 8-12K
8-12K X
12-16K 0
16-20K X
20-24K 1
\\A

Access to an absent page

Presence bit

Page fault (Trap to OS)
Page fault management

Find a free physical frame

If there 1s a free frame; use it

Else, select a page to replace (to free a frame)

Save the replaced page on disk if necessary (dirty page)
Load the page from disk in the physical frame

Update page table

Restart instruction

Require a presence bit, a dirty bit, a disk @ 1n the page table

Different page replacement algorithms

On demand paging

load M

@ page is on
backing store

\‘“‘--___ e

opearating
system
reference trap
i
restart page table
instruction
free frame —
® ®
resal page bring in
table missing page
physical

memaory

Page replacement
algorithms

= Working set model

= Algorithms
= Optimal
= FIFO

= Second chance
= LRU

Disk much much slower than memory (RAM)
Goal: run at memory (not disk) speed
90/10 rule: 10% of memory gets 90% of memory refs

So, keep that 10% in real memory, the other 90% on disk

A_A

Aemory addre

>

S2oUaJajaJ JO H

—'=

What 1s optimal (if you knew the future)?

Replace pages that will not be used for longest
period of time

Example
Reference string : 0,1,2,3,0,1,4,0,1,2,3,4,1,2

4 physicals frames:

2 |2 |2 6 pages faults

Evict oldest page 1n system

Example

Reference string : 0,1,2,3,0,1,4,0,1,2,3,4,1,2

4 physicals frames:

10 page faults

Implementation: just a list

Approximate optimal with least recently used
Because past often predicts the future
Example
Reference string : 0,1,2,3,0,1,4,0,1,2,3,4,1,2

4 physicals frames:

0O]1]0|O0 ([0 |4

11111111
21414 |3 |3

8 page faults

31312 |2 |2

Expensive
Need specific hardware
Approximate LRU

The aging algorithm
Add a counter for each page (the date)

On a page access, all page counters are shifted right,
inject 1 for the accessed page, else 0

On a page fault, remove the page with the lowest
counter

Aging : example

page . Paged Pagel Page2 pages idate
000 000 000

Page 0 100 000 000 P0,P1=P2

Page 1 010 100 000 P1,P0,P2

Page 2 001 010 100 P2,P1,P0

Page 1 000 101 010 P1,P2,P0

PO is the oldest

Simple FIFO modification

Use an access bit R for each page

Set to 1 when page is referenced

Periodically reset by hardware
Inspect the R bit of the oldest page (of the FIFO list)

It O : replace the page

If 1 : clear the bit, put the page at the end of the list,
and repeat

Appromixation of LRU

Naive paging
Page replacement : 2 disk IO per page fault
Reduce the 10 on the critical path

Keep a pool of free frames

Fetch the page 1n an already free page

Swap out a page in backgound

Separate linking from memory concern
Simplifies allocation, free and swap
Eliminate external fragmentation

May leverage internal fragmentation

Resources you can read

= http://en.wikipedia.org/wiki/Page_table
= Wikipedia can always be useful

= Operating System Concepts, 8th Edition, Abraham
Silberschatz, Peter B. Galvin, Greg Gagne

= http://os-book.com/
= Chapters 7 & 8

= Modern Operating Systems, Andrew Tanenbaum

= http://www.cs.vu.nl/~ast/books/mos2/
= Chapter 4

http://en.wikipedia.org/wiki/Page_table
http://os-book.com/
http://www.cs.vu.nl/~ast/books/mos2/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

