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Memory 1s a ressource required by all processes

Every program needs to be loaded in memory to be
running

Problems

Address translation
Symbol — Logical address — physical address

Memory allocation and exhaustion
Memory sharing

Memory protection
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Translation between logical and physical adresses

Determine where process will reside in memory
Translate all references within program

Established once for all
Monoprogramming

One program in memory

Easy (could even be done before load-time)

Multiprogramming

N programs in memory
Compiler and linker do not know the implantation of processes in memory

Need to track op-codes that must be updated at load-time
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Remaining problems

How to enforce protection ?
How to move program once in memory ?
What if no contiguous free region fits program size ?

Can we separate linking from memory management
problems ?



Separate linking problem from memory
management

Give each program its own virtual address space

Linker works on virtual addresses

Virtual address translation done at runtime

Relocate each load/store to its physical address

Require specific hardware (MMU)
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Programs can be relocated while running
Ease swap in/swap out
Enforce protection

Prevent one app from messing with another's
memory

Programs can see more memory than exists

Most of a process's memory will be 1dle

Write 1dle part to disk until needed (swap)



Contiguous allocation of variable size
Two special privileged registers: base and bound
On each load/store:

Check 0 <= virtual address < bound, else trap to kernel

Physical address = virtual address (plus) base

-
bound base ®
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virtual yes B Q
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Trap to kernel



Moving a process in memory

Change base register
Context switch

OS must re-load base and bound register
Advantages

Cheap 1n terms of hardware: only two registers

Cheap in terms of cycles: do add and compare in parallel
Disadvantages
Still contiguous allocation

Growing a process 1s expensive or impossible

Hard to share code or data



Non contiguous allocation

Split a program 1n different non contiguous
segments of variable size

Let processes have many base/bound registers

Address space built from many segments

Can share/protect memory at segment granularity

Must specify segment as part of virtual address
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Each process has a segment table

Each virtual address indicates a segment and offset:

Top bits of addr select segment, low bits select offset

Virtual addr mem

3 0x1000]
Seg#H I —|123

Seg table
Prot] bose




Segmentation example

= 4-bit segment number (1st digit), 12 bit offset (last 3)
= Where 1s 0x02407? 0x11087? 0x265c¢? 0x30027? 0x1600?
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Segmentation tradeoffs

= Advantages

= Multiple segments per process

= Allows sharing
= Disadvantages

= N byte segment needs N contiguous bytes of
physical memory

= Fragmentation



Remember fragmentation
problem

= Fragmentation => 1nability to use free memory

= Overtime:

= Variable-size pieces = many small holes (external
fragmentation)
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Virtual memory 1s divided into small pages

Pages are fixed size
A page 1s contiguous
Map virtual pages to physical block

Non contiguous allocation of blocks

Each process has a separate mapping but can share the
same physical block

MMU
OS gains control on certain operations

Non allocated pages trap to OS on access
Read only pages trap to OS on write
OS can change the mapping
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= Page table

= Global or per process
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Require extra memory references on each load/store

Cache recently used translations

Locality principle
High probability that the next required address 1s close

Translation Lookaside Buffer (TLB)

Fast (small) associative memory which can perform a
parallel search

Typical TLB

Hit time : 1 clock cycle
Miss rate 1%

TLB management : hardware or software
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What to do when switch address space ?

Flush the TLB

Tag each entry with the process's 1d

Update TLB on page fault (add/remove TLB entries)



Problem : page table size

= Flat page tables are huge

= Example
= 4GB of virtual memory (32 bits address)
= 4KB pages
= 20bits page number, 12 bits offset
= 1MB page table size :<



Reduce the size of page tables in memory

Structured page tables in 2 or more levels

All the page tables are not present in memory all
the time

Some page tables are stored on disk and fetched 1t
necessary

Based on a on-demand paging mechanism
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Example: two level pages

Linear Address

CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary

31 22 21 12 11 0
Directory Table Offset
4
/112 4 KByte Page
10 “10  Page Table —» Physical Address
Page Directory
—» Page-Table Entry ,’;Dk
—| Directory Entry o
o
A 32* 1024 PDE x 1024 PTE = 220 Pages




Virtual memory > physical memory

Some pages are not present in memory (X)

Stored on disk
Physical
Virtual memory
memory 0-4K
0-4K 2 L 4-8K
4-8K
X 8-12K
8-12K X
12-16K 0
16-20K X
20-24K 1
\\A




Access to an absent page

Presence bit

Page fault (Trap to OS)
Page fault management

Find a free physical frame

If there 1s a free frame; use it

Else, select a page to replace (to free a frame)

Save the replaced page on disk if necessary (dirty page)
Load the page from disk in the physical frame

Update page table

Restart instruction

Require a presence bit, a dirty bit, a disk @ 1n the page table

Different page replacement algorithms



On demand paging
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Page replacement
algorithms

= Working set model

= Algorithms
= Optimal
= FIFO

= Second chance
= LRU



Disk much much slower than memory (RAM)
Goal: run at memory (not disk) speed
90/10 rule: 10% of memory gets 90% of memory refs

So, keep that 10% in real memory, the other 90% on disk
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What 1s optimal (if you knew the future)?

Replace pages that will not be used for longest
period of time

Example
Reference string : 0,1,2,3,0,1,4,0,1,2,3,4,1,2

4 physicals frames:

2 |2 |2 6 pages faults




Evict oldest page 1n system

Example

Reference string : 0,1,2,3,0,1,4,0,1,2,3,4,1,2

4 physicals frames:

10 page faults

Implementation: just a list



Approximate optimal with least recently used
Because past often predicts the future
Example
Reference string : 0,1,2,3,0,1,4,0,1,2,3,4,1,2

4 physicals frames:

0O]1]0|O0 ([0 |4

11111111
21414 |3 |3

8 page faults

31312 |2 |2




Expensive
Need specific hardware
Approximate LRU

The aging algorithm
Add a counter for each page (the date)

On a page access, all page counters are shifted right,
inject 1 for the accessed page, else 0

On a page fault, remove the page with the lowest
counter



Aging : example

page . Paged  Pagel  Page2  pages idate
000 000 000

Page 0 100 000 000 P0,P1=P2

Page 1 010 100 000 P1,P0,P2

Page 2 001 010 100 P2,P1,P0

Page 1 000 101 010 P1,P2,P0

PO is the oldest



Simple FIFO modification

Use an access bit R for each page

Set to 1 when page is referenced

Periodically reset by hardware
Inspect the R bit of the oldest page (of the FIFO list)

It O : replace the page

If 1 : clear the bit, put the page at the end of the list,
and repeat

Appromixation of LRU



Naive paging
Page replacement : 2 disk IO per page fault
Reduce the 10 on the critical path

Keep a pool of free frames

Fetch the page 1n an already free page

Swap out a page in backgound



Separate linking from memory concern
Simplifies allocation, free and swap
Eliminate external fragmentation

May leverage internal fragmentation



Resources you can read

= http://en.wikipedia.org/wiki/Page_table
= Wikipedia can always be useful

= Operating System Concepts, 8th Edition, Abraham
Silberschatz, Peter B. Galvin, Greg Gagne

= http://os-book.com/
= Chapters 7 & 8

= Modern Operating Systems, Andrew Tanenbaum

= http://www.cs.vu.nl/~ast/books/mos2/
= Chapter 4


http://en.wikipedia.org/wiki/Page_table
http://os-book.com/
http://www.cs.vu.nl/~ast/books/mos2/
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